Omil
72\left(n-\frac{1-\sqrt{10}}{9}\right)\left(n-\frac{\sqrt{10}+1}{9}\right)
Baholash
72n^{2}-16n-8
Baham ko'rish
Klipbordga nusxa olish
72n^{2}-16n-8=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
n=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 72\left(-8\right)}}{2\times 72}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-\left(-16\right)±\sqrt{256-4\times 72\left(-8\right)}}{2\times 72}
-16 kvadratini chiqarish.
n=\frac{-\left(-16\right)±\sqrt{256-288\left(-8\right)}}{2\times 72}
-4 ni 72 marotabaga ko'paytirish.
n=\frac{-\left(-16\right)±\sqrt{256+2304}}{2\times 72}
-288 ni -8 marotabaga ko'paytirish.
n=\frac{-\left(-16\right)±\sqrt{2560}}{2\times 72}
256 ni 2304 ga qo'shish.
n=\frac{-\left(-16\right)±16\sqrt{10}}{2\times 72}
2560 ning kvadrat ildizini chiqarish.
n=\frac{16±16\sqrt{10}}{2\times 72}
-16 ning teskarisi 16 ga teng.
n=\frac{16±16\sqrt{10}}{144}
2 ni 72 marotabaga ko'paytirish.
n=\frac{16\sqrt{10}+16}{144}
n=\frac{16±16\sqrt{10}}{144} tenglamasini yeching, bunda ± musbat. 16 ni 16\sqrt{10} ga qo'shish.
n=\frac{\sqrt{10}+1}{9}
16+16\sqrt{10} ni 144 ga bo'lish.
n=\frac{16-16\sqrt{10}}{144}
n=\frac{16±16\sqrt{10}}{144} tenglamasini yeching, bunda ± manfiy. 16 dan 16\sqrt{10} ni ayirish.
n=\frac{1-\sqrt{10}}{9}
16-16\sqrt{10} ni 144 ga bo'lish.
72n^{2}-16n-8=72\left(n-\frac{\sqrt{10}+1}{9}\right)\left(n-\frac{1-\sqrt{10}}{9}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1+\sqrt{10}}{9} ga va x_{2} uchun \frac{1-\sqrt{10}}{9} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}