y uchun yechish
y = \frac{8}{3} = 2\frac{2}{3} \approx 2,666666667
y = \frac{10}{3} = 3\frac{1}{3} \approx 3,333333333
Grafik
Baham ko'rish
Klipbordga nusxa olish
72\left(y-3\right)^{2}=8
y qiymati 3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(y-3\right)^{2} ga ko'paytirish.
72\left(y^{2}-6y+9\right)=8
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(y-3\right)^{2} kengaytirilishi uchun ishlating.
72y^{2}-432y+648=8
72 ga y^{2}-6y+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
72y^{2}-432y+648-8=0
Ikkala tarafdan 8 ni ayirish.
72y^{2}-432y+640=0
640 olish uchun 648 dan 8 ni ayirish.
y=\frac{-\left(-432\right)±\sqrt{\left(-432\right)^{2}-4\times 72\times 640}}{2\times 72}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 72 ni a, -432 ni b va 640 ni c bilan almashtiring.
y=\frac{-\left(-432\right)±\sqrt{186624-4\times 72\times 640}}{2\times 72}
-432 kvadratini chiqarish.
y=\frac{-\left(-432\right)±\sqrt{186624-288\times 640}}{2\times 72}
-4 ni 72 marotabaga ko'paytirish.
y=\frac{-\left(-432\right)±\sqrt{186624-184320}}{2\times 72}
-288 ni 640 marotabaga ko'paytirish.
y=\frac{-\left(-432\right)±\sqrt{2304}}{2\times 72}
186624 ni -184320 ga qo'shish.
y=\frac{-\left(-432\right)±48}{2\times 72}
2304 ning kvadrat ildizini chiqarish.
y=\frac{432±48}{2\times 72}
-432 ning teskarisi 432 ga teng.
y=\frac{432±48}{144}
2 ni 72 marotabaga ko'paytirish.
y=\frac{480}{144}
y=\frac{432±48}{144} tenglamasini yeching, bunda ± musbat. 432 ni 48 ga qo'shish.
y=\frac{10}{3}
\frac{480}{144} ulushini 48 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y=\frac{384}{144}
y=\frac{432±48}{144} tenglamasini yeching, bunda ± manfiy. 432 dan 48 ni ayirish.
y=\frac{8}{3}
\frac{384}{144} ulushini 48 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y=\frac{10}{3} y=\frac{8}{3}
Tenglama yechildi.
72\left(y-3\right)^{2}=8
y qiymati 3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(y-3\right)^{2} ga ko'paytirish.
72\left(y^{2}-6y+9\right)=8
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(y-3\right)^{2} kengaytirilishi uchun ishlating.
72y^{2}-432y+648=8
72 ga y^{2}-6y+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
72y^{2}-432y=8-648
Ikkala tarafdan 648 ni ayirish.
72y^{2}-432y=-640
-640 olish uchun 8 dan 648 ni ayirish.
\frac{72y^{2}-432y}{72}=-\frac{640}{72}
Ikki tarafini 72 ga bo‘ling.
y^{2}+\left(-\frac{432}{72}\right)y=-\frac{640}{72}
72 ga bo'lish 72 ga ko'paytirishni bekor qiladi.
y^{2}-6y=-\frac{640}{72}
-432 ni 72 ga bo'lish.
y^{2}-6y=-\frac{80}{9}
\frac{-640}{72} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y^{2}-6y+\left(-3\right)^{2}=-\frac{80}{9}+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-6y+9=-\frac{80}{9}+9
-3 kvadratini chiqarish.
y^{2}-6y+9=\frac{1}{9}
-\frac{80}{9} ni 9 ga qo'shish.
\left(y-3\right)^{2}=\frac{1}{9}
y^{2}-6y+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-3\right)^{2}}=\sqrt{\frac{1}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-3=\frac{1}{3} y-3=-\frac{1}{3}
Qisqartirish.
y=\frac{10}{3} y=\frac{8}{3}
3 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}