Baholash
14
Omil
2\times 7
Baham ko'rish
Klipbordga nusxa olish
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)}
\frac{1}{7-4\sqrt{3}} maxrajini 7+4\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{7^{2}-\left(-4\sqrt{3}\right)^{2}}
Hisoblang: \left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-\left(-4\sqrt{3}\right)^{2}}
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
\left(-4\sqrt{3}\right)^{2} ni kengaytirish.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-16\left(\sqrt{3}\right)^{2}}
2 daraja ko‘rsatkichini -4 ga hisoblang va 16 ni qiymatni oling.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-16\times 3}
\sqrt{3} kvadrati – 3.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-48}
48 hosil qilish uchun 16 va 3 ni ko'paytirish.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{1}
1 olish uchun 49 dan 48 ni ayirish.
7-4\sqrt{3}+7+4\sqrt{3}
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
14-4\sqrt{3}+4\sqrt{3}
14 olish uchun 7 va 7'ni qo'shing.
14
0 ni olish uchun -4\sqrt{3} va 4\sqrt{3} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}