Asosiy tarkibga oʻtish
x, y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

7x-15y-2=0,x+2y=3
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
7x-15y-2=0
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
7x-15y=2
2 ni tenglamaning ikkala tarafiga qo'shish.
7x=15y+2
15y ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{7}\left(15y+2\right)
Ikki tarafini 7 ga bo‘ling.
x=\frac{15}{7}y+\frac{2}{7}
\frac{1}{7} ni 15y+2 marotabaga ko'paytirish.
\frac{15}{7}y+\frac{2}{7}+2y=3
\frac{15y+2}{7} ni x uchun boshqa tenglamada almashtirish, x+2y=3.
\frac{29}{7}y+\frac{2}{7}=3
\frac{15y}{7} ni 2y ga qo'shish.
\frac{29}{7}y=\frac{19}{7}
Tenglamaning ikkala tarafidan \frac{2}{7} ni ayirish.
y=\frac{19}{29}
Tenglamaning ikki tarafini \frac{29}{7} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{15}{7}\times \frac{19}{29}+\frac{2}{7}
\frac{19}{29} ni y uchun x=\frac{15}{7}y+\frac{2}{7} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{285}{203}+\frac{2}{7}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{15}{7} ni \frac{19}{29} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
x=\frac{49}{29}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{7} ni \frac{285}{203} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{49}{29},y=\frac{19}{29}
Tizim hal qilindi.
7x-15y-2=0,x+2y=3
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}7&-15\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}7&-15\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
\left(\begin{matrix}7&-15\\1&2\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7\times 2-\left(-15\right)}&-\frac{-15}{7\times 2-\left(-15\right)}\\-\frac{1}{7\times 2-\left(-15\right)}&\frac{7}{7\times 2-\left(-15\right)}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{29}&\frac{15}{29}\\-\frac{1}{29}&\frac{7}{29}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{29}\times 2+\frac{15}{29}\times 3\\-\frac{1}{29}\times 2+\frac{7}{29}\times 3\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{49}{29}\\\frac{19}{29}\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=\frac{49}{29},y=\frac{19}{29}
x va y matritsa elementlarini chiqarib olish.
7x-15y-2=0,x+2y=3
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
7x-15y-2=0,7x+7\times 2y=7\times 3
7x va x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 1 ga va ikkinchining har bir tarafidagi barcha shartlarni 7 ga ko'paytiring.
7x-15y-2=0,7x+14y=21
Qisqartirish.
7x-7x-15y-14y-2=-21
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 7x-15y-2=0 dan 7x+14y=21 ni ayirish.
-15y-14y-2=-21
7x ni -7x ga qo'shish. 7x va -7x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-29y-2=-21
-15y ni -14y ga qo'shish.
-29y=-19
2 ni tenglamaning ikkala tarafiga qo'shish.
y=\frac{19}{29}
Ikki tarafini -29 ga bo‘ling.
x+2\times \frac{19}{29}=3
\frac{19}{29} ni y uchun x+2y=3 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x+\frac{38}{29}=3
2 ni \frac{19}{29} marotabaga ko'paytirish.
x=\frac{49}{29}
Tenglamaning ikkala tarafidan \frac{38}{29} ni ayirish.
x=\frac{49}{29},y=\frac{19}{29}
Tizim hal qilindi.