Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(7x-8\right)=0
x omili.
x=0 x=\frac{8}{7}
Tenglamani yechish uchun x=0 va 7x-8=0 ni yeching.
7x^{2}-8x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, -8 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±8}{2\times 7}
\left(-8\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{8±8}{2\times 7}
-8 ning teskarisi 8 ga teng.
x=\frac{8±8}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{16}{14}
x=\frac{8±8}{14} tenglamasini yeching, bunda ± musbat. 8 ni 8 ga qo'shish.
x=\frac{8}{7}
\frac{16}{14} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{14}
x=\frac{8±8}{14} tenglamasini yeching, bunda ± manfiy. 8 dan 8 ni ayirish.
x=0
0 ni 14 ga bo'lish.
x=\frac{8}{7} x=0
Tenglama yechildi.
7x^{2}-8x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{7x^{2}-8x}{7}=\frac{0}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}-\frac{8}{7}x=\frac{0}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{8}{7}x=0
0 ni 7 ga bo'lish.
x^{2}-\frac{8}{7}x+\left(-\frac{4}{7}\right)^{2}=\left(-\frac{4}{7}\right)^{2}
-\frac{8}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{4}{7} olish uchun. Keyin, -\frac{4}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{8}{7}x+\frac{16}{49}=\frac{16}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{4}{7} kvadratini chiqarish.
\left(x-\frac{4}{7}\right)^{2}=\frac{16}{49}
x^{2}-\frac{8}{7}x+\frac{16}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{4}{7}\right)^{2}}=\sqrt{\frac{16}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{4}{7}=\frac{4}{7} x-\frac{4}{7}=-\frac{4}{7}
Qisqartirish.
x=\frac{8}{7} x=0
\frac{4}{7} ni tenglamaning ikkala tarafiga qo'shish.