Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

7x^{2}-300x+800=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-300\right)±\sqrt{\left(-300\right)^{2}-4\times 7\times 800}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, -300 ni b va 800 ni c bilan almashtiring.
x=\frac{-\left(-300\right)±\sqrt{90000-4\times 7\times 800}}{2\times 7}
-300 kvadratini chiqarish.
x=\frac{-\left(-300\right)±\sqrt{90000-28\times 800}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-300\right)±\sqrt{90000-22400}}{2\times 7}
-28 ni 800 marotabaga ko'paytirish.
x=\frac{-\left(-300\right)±\sqrt{67600}}{2\times 7}
90000 ni -22400 ga qo'shish.
x=\frac{-\left(-300\right)±260}{2\times 7}
67600 ning kvadrat ildizini chiqarish.
x=\frac{300±260}{2\times 7}
-300 ning teskarisi 300 ga teng.
x=\frac{300±260}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{560}{14}
x=\frac{300±260}{14} tenglamasini yeching, bunda ± musbat. 300 ni 260 ga qo'shish.
x=40
560 ni 14 ga bo'lish.
x=\frac{40}{14}
x=\frac{300±260}{14} tenglamasini yeching, bunda ± manfiy. 300 dan 260 ni ayirish.
x=\frac{20}{7}
\frac{40}{14} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=40 x=\frac{20}{7}
Tenglama yechildi.
7x^{2}-300x+800=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
7x^{2}-300x+800-800=-800
Tenglamaning ikkala tarafidan 800 ni ayirish.
7x^{2}-300x=-800
O‘zidan 800 ayirilsa 0 qoladi.
\frac{7x^{2}-300x}{7}=-\frac{800}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}-\frac{300}{7}x=-\frac{800}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{300}{7}x+\left(-\frac{150}{7}\right)^{2}=-\frac{800}{7}+\left(-\frac{150}{7}\right)^{2}
-\frac{300}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{150}{7} olish uchun. Keyin, -\frac{150}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{300}{7}x+\frac{22500}{49}=-\frac{800}{7}+\frac{22500}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{150}{7} kvadratini chiqarish.
x^{2}-\frac{300}{7}x+\frac{22500}{49}=\frac{16900}{49}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{800}{7} ni \frac{22500}{49} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{150}{7}\right)^{2}=\frac{16900}{49}
x^{2}-\frac{300}{7}x+\frac{22500}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{150}{7}\right)^{2}}=\sqrt{\frac{16900}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{150}{7}=\frac{130}{7} x-\frac{150}{7}=-\frac{130}{7}
Qisqartirish.
x=40 x=\frac{20}{7}
\frac{150}{7} ni tenglamaning ikkala tarafiga qo'shish.