Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

7x^{2}-14x+\frac{1}{4}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 7\times \frac{1}{4}}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, -14 ni b va \frac{1}{4} ni c bilan almashtiring.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 7\times \frac{1}{4}}}{2\times 7}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-28\times \frac{1}{4}}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{196-7}}{2\times 7}
-28 ni \frac{1}{4} marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{189}}{2\times 7}
196 ni -7 ga qo'shish.
x=\frac{-\left(-14\right)±3\sqrt{21}}{2\times 7}
189 ning kvadrat ildizini chiqarish.
x=\frac{14±3\sqrt{21}}{2\times 7}
-14 ning teskarisi 14 ga teng.
x=\frac{14±3\sqrt{21}}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{3\sqrt{21}+14}{14}
x=\frac{14±3\sqrt{21}}{14} tenglamasini yeching, bunda ± musbat. 14 ni 3\sqrt{21} ga qo'shish.
x=\frac{3\sqrt{21}}{14}+1
14+3\sqrt{21} ni 14 ga bo'lish.
x=\frac{14-3\sqrt{21}}{14}
x=\frac{14±3\sqrt{21}}{14} tenglamasini yeching, bunda ± manfiy. 14 dan 3\sqrt{21} ni ayirish.
x=-\frac{3\sqrt{21}}{14}+1
14-3\sqrt{21} ni 14 ga bo'lish.
x=\frac{3\sqrt{21}}{14}+1 x=-\frac{3\sqrt{21}}{14}+1
Tenglama yechildi.
7x^{2}-14x+\frac{1}{4}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
7x^{2}-14x+\frac{1}{4}-\frac{1}{4}=-\frac{1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
7x^{2}-14x=-\frac{1}{4}
O‘zidan \frac{1}{4} ayirilsa 0 qoladi.
\frac{7x^{2}-14x}{7}=-\frac{\frac{1}{4}}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}+\left(-\frac{14}{7}\right)x=-\frac{\frac{1}{4}}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{\frac{1}{4}}{7}
-14 ni 7 ga bo'lish.
x^{2}-2x=-\frac{1}{28}
-\frac{1}{4} ni 7 ga bo'lish.
x^{2}-2x+1=-\frac{1}{28}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{27}{28}
-\frac{1}{28} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{27}{28}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{27}{28}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{3\sqrt{21}}{14} x-1=-\frac{3\sqrt{21}}{14}
Qisqartirish.
x=\frac{3\sqrt{21}}{14}+1 x=-\frac{3\sqrt{21}}{14}+1
1 ni tenglamaning ikkala tarafiga qo'shish.