x uchun yechish
x=\frac{3\sqrt{21}}{14}+1\approx 1,981980506
x=-\frac{3\sqrt{21}}{14}+1\approx 0,018019494
Grafik
Baham ko'rish
Klipbordga nusxa olish
7x^{2}-14x+\frac{1}{4}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 7\times \frac{1}{4}}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, -14 ni b va \frac{1}{4} ni c bilan almashtiring.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 7\times \frac{1}{4}}}{2\times 7}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-28\times \frac{1}{4}}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{196-7}}{2\times 7}
-28 ni \frac{1}{4} marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{189}}{2\times 7}
196 ni -7 ga qo'shish.
x=\frac{-\left(-14\right)±3\sqrt{21}}{2\times 7}
189 ning kvadrat ildizini chiqarish.
x=\frac{14±3\sqrt{21}}{2\times 7}
-14 ning teskarisi 14 ga teng.
x=\frac{14±3\sqrt{21}}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{3\sqrt{21}+14}{14}
x=\frac{14±3\sqrt{21}}{14} tenglamasini yeching, bunda ± musbat. 14 ni 3\sqrt{21} ga qo'shish.
x=\frac{3\sqrt{21}}{14}+1
14+3\sqrt{21} ni 14 ga bo'lish.
x=\frac{14-3\sqrt{21}}{14}
x=\frac{14±3\sqrt{21}}{14} tenglamasini yeching, bunda ± manfiy. 14 dan 3\sqrt{21} ni ayirish.
x=-\frac{3\sqrt{21}}{14}+1
14-3\sqrt{21} ni 14 ga bo'lish.
x=\frac{3\sqrt{21}}{14}+1 x=-\frac{3\sqrt{21}}{14}+1
Tenglama yechildi.
7x^{2}-14x+\frac{1}{4}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
7x^{2}-14x+\frac{1}{4}-\frac{1}{4}=-\frac{1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
7x^{2}-14x=-\frac{1}{4}
O‘zidan \frac{1}{4} ayirilsa 0 qoladi.
\frac{7x^{2}-14x}{7}=-\frac{\frac{1}{4}}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}+\left(-\frac{14}{7}\right)x=-\frac{\frac{1}{4}}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{\frac{1}{4}}{7}
-14 ni 7 ga bo'lish.
x^{2}-2x=-\frac{1}{28}
-\frac{1}{4} ni 7 ga bo'lish.
x^{2}-2x+1=-\frac{1}{28}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{27}{28}
-\frac{1}{28} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{27}{28}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{27}{28}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{3\sqrt{21}}{14} x-1=-\frac{3\sqrt{21}}{14}
Qisqartirish.
x=\frac{3\sqrt{21}}{14}+1 x=-\frac{3\sqrt{21}}{14}+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}