Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

7x^{2}+6x-31=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-6±\sqrt{6^{2}-4\times 7\left(-31\right)}}{2\times 7}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{36-4\times 7\left(-31\right)}}{2\times 7}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-28\left(-31\right)}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+868}}{2\times 7}
-28 ni -31 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{904}}{2\times 7}
36 ni 868 ga qo'shish.
x=\frac{-6±2\sqrt{226}}{2\times 7}
904 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{226}}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{2\sqrt{226}-6}{14}
x=\frac{-6±2\sqrt{226}}{14} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{226} ga qo'shish.
x=\frac{\sqrt{226}-3}{7}
-6+2\sqrt{226} ni 14 ga bo'lish.
x=\frac{-2\sqrt{226}-6}{14}
x=\frac{-6±2\sqrt{226}}{14} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{226} ni ayirish.
x=\frac{-\sqrt{226}-3}{7}
-6-2\sqrt{226} ni 14 ga bo'lish.
7x^{2}+6x-31=7\left(x-\frac{\sqrt{226}-3}{7}\right)\left(x-\frac{-\sqrt{226}-3}{7}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-3+\sqrt{226}}{7} ga va x_{2} uchun \frac{-3-\sqrt{226}}{7} ga bo‘ling.