Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(7x+5\right)=0
x omili.
x=0 x=-\frac{5}{7}
Tenglamani yechish uchun x=0 va 7x+5=0 ni yeching.
7x^{2}+5x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{5^{2}}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, 5 ni b va 0 ni c bilan almashtiring.
x=\frac{-5±5}{2\times 7}
5^{2} ning kvadrat ildizini chiqarish.
x=\frac{-5±5}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{0}{14}
x=\frac{-5±5}{14} tenglamasini yeching, bunda ± musbat. -5 ni 5 ga qo'shish.
x=0
0 ni 14 ga bo'lish.
x=-\frac{10}{14}
x=\frac{-5±5}{14} tenglamasini yeching, bunda ± manfiy. -5 dan 5 ni ayirish.
x=-\frac{5}{7}
\frac{-10}{14} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{5}{7}
Tenglama yechildi.
7x^{2}+5x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{7x^{2}+5x}{7}=\frac{0}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}+\frac{5}{7}x=\frac{0}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{7}x=0
0 ni 7 ga bo'lish.
x^{2}+\frac{5}{7}x+\left(\frac{5}{14}\right)^{2}=\left(\frac{5}{14}\right)^{2}
\frac{5}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{14} olish uchun. Keyin, \frac{5}{14} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{7}x+\frac{25}{196}=\frac{25}{196}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{14} kvadratini chiqarish.
\left(x+\frac{5}{14}\right)^{2}=\frac{25}{196}
x^{2}+\frac{5}{7}x+\frac{25}{196} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{14}\right)^{2}}=\sqrt{\frac{25}{196}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{14}=\frac{5}{14} x+\frac{5}{14}=-\frac{5}{14}
Qisqartirish.
x=0 x=-\frac{5}{7}
Tenglamaning ikkala tarafidan \frac{5}{14} ni ayirish.