x uchun yechish (complex solution)
x=\frac{-5+\sqrt{115}i}{14}\approx -0,357142857+0,765986092i
x=\frac{-\sqrt{115}i-5}{14}\approx -0,357142857-0,765986092i
Grafik
Baham ko'rish
Klipbordga nusxa olish
7x^{2}+5x+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{5^{2}-4\times 7\times 5}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, 5 ni b va 5 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 7\times 5}}{2\times 7}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-28\times 5}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25-140}}{2\times 7}
-28 ni 5 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{-115}}{2\times 7}
25 ni -140 ga qo'shish.
x=\frac{-5±\sqrt{115}i}{2\times 7}
-115 ning kvadrat ildizini chiqarish.
x=\frac{-5±\sqrt{115}i}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{-5+\sqrt{115}i}{14}
x=\frac{-5±\sqrt{115}i}{14} tenglamasini yeching, bunda ± musbat. -5 ni i\sqrt{115} ga qo'shish.
x=\frac{-\sqrt{115}i-5}{14}
x=\frac{-5±\sqrt{115}i}{14} tenglamasini yeching, bunda ± manfiy. -5 dan i\sqrt{115} ni ayirish.
x=\frac{-5+\sqrt{115}i}{14} x=\frac{-\sqrt{115}i-5}{14}
Tenglama yechildi.
7x^{2}+5x+5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
7x^{2}+5x+5-5=-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
7x^{2}+5x=-5
O‘zidan 5 ayirilsa 0 qoladi.
\frac{7x^{2}+5x}{7}=-\frac{5}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}+\frac{5}{7}x=-\frac{5}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{7}x+\left(\frac{5}{14}\right)^{2}=-\frac{5}{7}+\left(\frac{5}{14}\right)^{2}
\frac{5}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{14} olish uchun. Keyin, \frac{5}{14} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{7}x+\frac{25}{196}=-\frac{5}{7}+\frac{25}{196}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{14} kvadratini chiqarish.
x^{2}+\frac{5}{7}x+\frac{25}{196}=-\frac{115}{196}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{5}{7} ni \frac{25}{196} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{14}\right)^{2}=-\frac{115}{196}
x^{2}+\frac{5}{7}x+\frac{25}{196} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{14}\right)^{2}}=\sqrt{-\frac{115}{196}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{14}=\frac{\sqrt{115}i}{14} x+\frac{5}{14}=-\frac{\sqrt{115}i}{14}
Qisqartirish.
x=\frac{-5+\sqrt{115}i}{14} x=\frac{-\sqrt{115}i-5}{14}
Tenglamaning ikkala tarafidan \frac{5}{14} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}