Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

7x^{2}=-5
Ikkala tarafdan 5 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=-\frac{5}{7}
Ikki tarafini 7 ga bo‘ling.
x=\frac{\sqrt{35}i}{7} x=-\frac{\sqrt{35}i}{7}
Tenglama yechildi.
7x^{2}+5=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 7\times 5}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, 0 ni b va 5 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 7\times 5}}{2\times 7}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-28\times 5}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-140}}{2\times 7}
-28 ni 5 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{35}i}{2\times 7}
-140 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{35}i}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{\sqrt{35}i}{7}
x=\frac{0±2\sqrt{35}i}{14} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{35}i}{7}
x=\frac{0±2\sqrt{35}i}{14} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{35}i}{7} x=-\frac{\sqrt{35}i}{7}
Tenglama yechildi.