x uchun yechish (complex solution)
x=-2i
x=2i
Grafik
Baham ko'rish
Klipbordga nusxa olish
7x^{2}+4-3x^{2}=-12
Ikkala tarafdan 3x^{2} ni ayirish.
4x^{2}+4=-12
4x^{2} ni olish uchun 7x^{2} va -3x^{2} ni birlashtirish.
4x^{2}=-12-4
Ikkala tarafdan 4 ni ayirish.
4x^{2}=-16
-16 olish uchun -12 dan 4 ni ayirish.
x^{2}=\frac{-16}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}=-4
-4 ni olish uchun -16 ni 4 ga bo‘ling.
x=2i x=-2i
Tenglama yechildi.
7x^{2}+4-3x^{2}=-12
Ikkala tarafdan 3x^{2} ni ayirish.
4x^{2}+4=-12
4x^{2} ni olish uchun 7x^{2} va -3x^{2} ni birlashtirish.
4x^{2}+4+12=0
12 ni ikki tarafga qo’shing.
4x^{2}+16=0
16 olish uchun 4 va 12'ni qo'shing.
x=\frac{0±\sqrt{0^{2}-4\times 4\times 16}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va 16 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 4\times 16}}{2\times 4}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-16\times 16}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-256}}{2\times 4}
-16 ni 16 marotabaga ko'paytirish.
x=\frac{0±16i}{2\times 4}
-256 ning kvadrat ildizini chiqarish.
x=\frac{0±16i}{8}
2 ni 4 marotabaga ko'paytirish.
x=2i
x=\frac{0±16i}{8} tenglamasini yeching, bunda ± musbat.
x=-2i
x=\frac{0±16i}{8} tenglamasini yeching, bunda ± manfiy.
x=2i x=-2i
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}