x uchun yechish
x=-1
x=\frac{6}{7}\approx 0,857142857
Grafik
Baham ko'rish
Klipbordga nusxa olish
7xx+x=6
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
7x^{2}+x=6
x^{2} hosil qilish uchun x va x ni ko'paytirish.
7x^{2}+x-6=0
Ikkala tarafdan 6 ni ayirish.
x=\frac{-1±\sqrt{1^{2}-4\times 7\left(-6\right)}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, 1 ni b va -6 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\times 7\left(-6\right)}}{2\times 7}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-28\left(-6\right)}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+168}}{2\times 7}
-28 ni -6 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{169}}{2\times 7}
1 ni 168 ga qo'shish.
x=\frac{-1±13}{2\times 7}
169 ning kvadrat ildizini chiqarish.
x=\frac{-1±13}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{12}{14}
x=\frac{-1±13}{14} tenglamasini yeching, bunda ± musbat. -1 ni 13 ga qo'shish.
x=\frac{6}{7}
\frac{12}{14} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{14}{14}
x=\frac{-1±13}{14} tenglamasini yeching, bunda ± manfiy. -1 dan 13 ni ayirish.
x=-1
-14 ni 14 ga bo'lish.
x=\frac{6}{7} x=-1
Tenglama yechildi.
7xx+x=6
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
7x^{2}+x=6
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\frac{7x^{2}+x}{7}=\frac{6}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}+\frac{1}{7}x=\frac{6}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{7}x+\left(\frac{1}{14}\right)^{2}=\frac{6}{7}+\left(\frac{1}{14}\right)^{2}
\frac{1}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{14} olish uchun. Keyin, \frac{1}{14} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{6}{7}+\frac{1}{196}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{14} kvadratini chiqarish.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{169}{196}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{6}{7} ni \frac{1}{196} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{14}\right)^{2}=\frac{169}{196}
x^{2}+\frac{1}{7}x+\frac{1}{196} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{14}\right)^{2}}=\sqrt{\frac{169}{196}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{14}=\frac{13}{14} x+\frac{1}{14}=-\frac{13}{14}
Qisqartirish.
x=\frac{6}{7} x=-1
Tenglamaning ikkala tarafidan \frac{1}{14} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}