k uchun yechish
k = \frac{3 \sqrt{30} - 9}{7} \approx 1,061668104
k=\frac{-3\sqrt{30}-9}{7}\approx -3,633096675
Baham ko'rish
Klipbordga nusxa olish
7k^{2}+18k-27=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
k=\frac{-18±\sqrt{18^{2}-4\times 7\left(-27\right)}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, 18 ni b va -27 ni c bilan almashtiring.
k=\frac{-18±\sqrt{324-4\times 7\left(-27\right)}}{2\times 7}
18 kvadratini chiqarish.
k=\frac{-18±\sqrt{324-28\left(-27\right)}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
k=\frac{-18±\sqrt{324+756}}{2\times 7}
-28 ni -27 marotabaga ko'paytirish.
k=\frac{-18±\sqrt{1080}}{2\times 7}
324 ni 756 ga qo'shish.
k=\frac{-18±6\sqrt{30}}{2\times 7}
1080 ning kvadrat ildizini chiqarish.
k=\frac{-18±6\sqrt{30}}{14}
2 ni 7 marotabaga ko'paytirish.
k=\frac{6\sqrt{30}-18}{14}
k=\frac{-18±6\sqrt{30}}{14} tenglamasini yeching, bunda ± musbat. -18 ni 6\sqrt{30} ga qo'shish.
k=\frac{3\sqrt{30}-9}{7}
-18+6\sqrt{30} ni 14 ga bo'lish.
k=\frac{-6\sqrt{30}-18}{14}
k=\frac{-18±6\sqrt{30}}{14} tenglamasini yeching, bunda ± manfiy. -18 dan 6\sqrt{30} ni ayirish.
k=\frac{-3\sqrt{30}-9}{7}
-18-6\sqrt{30} ni 14 ga bo'lish.
k=\frac{3\sqrt{30}-9}{7} k=\frac{-3\sqrt{30}-9}{7}
Tenglama yechildi.
7k^{2}+18k-27=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
7k^{2}+18k-27-\left(-27\right)=-\left(-27\right)
27 ni tenglamaning ikkala tarafiga qo'shish.
7k^{2}+18k=-\left(-27\right)
O‘zidan -27 ayirilsa 0 qoladi.
7k^{2}+18k=27
0 dan -27 ni ayirish.
\frac{7k^{2}+18k}{7}=\frac{27}{7}
Ikki tarafini 7 ga bo‘ling.
k^{2}+\frac{18}{7}k=\frac{27}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
k^{2}+\frac{18}{7}k+\left(\frac{9}{7}\right)^{2}=\frac{27}{7}+\left(\frac{9}{7}\right)^{2}
\frac{18}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{7} olish uchun. Keyin, \frac{9}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
k^{2}+\frac{18}{7}k+\frac{81}{49}=\frac{27}{7}+\frac{81}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{7} kvadratini chiqarish.
k^{2}+\frac{18}{7}k+\frac{81}{49}=\frac{270}{49}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{27}{7} ni \frac{81}{49} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(k+\frac{9}{7}\right)^{2}=\frac{270}{49}
k^{2}+\frac{18}{7}k+\frac{81}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(k+\frac{9}{7}\right)^{2}}=\sqrt{\frac{270}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
k+\frac{9}{7}=\frac{3\sqrt{30}}{7} k+\frac{9}{7}=-\frac{3\sqrt{30}}{7}
Qisqartirish.
k=\frac{3\sqrt{30}-9}{7} k=\frac{-3\sqrt{30}-9}{7}
Tenglamaning ikkala tarafidan \frac{9}{7} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}