Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(7x-7\right)\left(x+1\right)=\left(x+1\right)^{2}
7 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-7=\left(x+1\right)^{2}
7x-7 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x^{2}-7=x^{2}+2x+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
7x^{2}-7-x^{2}=2x+1
Ikkala tarafdan x^{2} ni ayirish.
6x^{2}-7=2x+1
6x^{2} ni olish uchun 7x^{2} va -x^{2} ni birlashtirish.
6x^{2}-7-2x=1
Ikkala tarafdan 2x ni ayirish.
6x^{2}-7-2x-1=0
Ikkala tarafdan 1 ni ayirish.
6x^{2}-8-2x=0
-8 olish uchun -7 dan 1 ni ayirish.
3x^{2}-4-x=0
Ikki tarafini 2 ga bo‘ling.
3x^{2}-x-4=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-1 ab=3\left(-4\right)=-12
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 3x^{2}+ax+bx-4 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-12 2,-6 3,-4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-12=-11 2-6=-4 3-4=-1
Har bir juftlik yigʻindisini hisoblang.
a=-4 b=3
Yechim – -1 yigʻindisini beruvchi juftlik.
\left(3x^{2}-4x\right)+\left(3x-4\right)
3x^{2}-x-4 ni \left(3x^{2}-4x\right)+\left(3x-4\right) sifatida qaytadan yozish.
x\left(3x-4\right)+3x-4
3x^{2}-4x ichida x ni ajrating.
\left(3x-4\right)\left(x+1\right)
Distributiv funktsiyasidan foydalangan holda 3x-4 umumiy terminini chiqaring.
x=\frac{4}{3} x=-1
Tenglamani yechish uchun 3x-4=0 va x+1=0 ni yeching.
\left(7x-7\right)\left(x+1\right)=\left(x+1\right)^{2}
7 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-7=\left(x+1\right)^{2}
7x-7 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x^{2}-7=x^{2}+2x+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
7x^{2}-7-x^{2}=2x+1
Ikkala tarafdan x^{2} ni ayirish.
6x^{2}-7=2x+1
6x^{2} ni olish uchun 7x^{2} va -x^{2} ni birlashtirish.
6x^{2}-7-2x=1
Ikkala tarafdan 2x ni ayirish.
6x^{2}-7-2x-1=0
Ikkala tarafdan 1 ni ayirish.
6x^{2}-8-2x=0
-8 olish uchun -7 dan 1 ni ayirish.
6x^{2}-2x-8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-8\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -2 ni b va -8 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-8\right)}}{2\times 6}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-8\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4+192}}{2\times 6}
-24 ni -8 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{196}}{2\times 6}
4 ni 192 ga qo'shish.
x=\frac{-\left(-2\right)±14}{2\times 6}
196 ning kvadrat ildizini chiqarish.
x=\frac{2±14}{2\times 6}
-2 ning teskarisi 2 ga teng.
x=\frac{2±14}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{16}{12}
x=\frac{2±14}{12} tenglamasini yeching, bunda ± musbat. 2 ni 14 ga qo'shish.
x=\frac{4}{3}
\frac{16}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{12}{12}
x=\frac{2±14}{12} tenglamasini yeching, bunda ± manfiy. 2 dan 14 ni ayirish.
x=-1
-12 ni 12 ga bo'lish.
x=\frac{4}{3} x=-1
Tenglama yechildi.
\left(7x-7\right)\left(x+1\right)=\left(x+1\right)^{2}
7 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-7=\left(x+1\right)^{2}
7x-7 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x^{2}-7=x^{2}+2x+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
7x^{2}-7-x^{2}=2x+1
Ikkala tarafdan x^{2} ni ayirish.
6x^{2}-7=2x+1
6x^{2} ni olish uchun 7x^{2} va -x^{2} ni birlashtirish.
6x^{2}-7-2x=1
Ikkala tarafdan 2x ni ayirish.
6x^{2}-2x=1+7
7 ni ikki tarafga qo’shing.
6x^{2}-2x=8
8 olish uchun 1 va 7'ni qo'shing.
\frac{6x^{2}-2x}{6}=\frac{8}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\left(-\frac{2}{6}\right)x=\frac{8}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{3}x=\frac{8}{6}
\frac{-2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{3}x=\frac{4}{3}
\frac{8}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{4}{3}+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{6} olish uchun. Keyin, -\frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{4}{3}+\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{6} kvadratini chiqarish.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{49}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{3} ni \frac{1}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{6}\right)^{2}=\frac{49}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{6}=\frac{7}{6} x-\frac{1}{6}=-\frac{7}{6}
Qisqartirish.
x=\frac{4}{3} x=-1
\frac{1}{6} ni tenglamaning ikkala tarafiga qo'shish.