Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=-74 ab=7\left(-120\right)=-840
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 7x^{2}+ax+bx-120 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-840 2,-420 3,-280 4,-210 5,-168 6,-140 7,-120 8,-105 10,-84 12,-70 14,-60 15,-56 20,-42 21,-40 24,-35 28,-30
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -840-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-840=-839 2-420=-418 3-280=-277 4-210=-206 5-168=-163 6-140=-134 7-120=-113 8-105=-97 10-84=-74 12-70=-58 14-60=-46 15-56=-41 20-42=-22 21-40=-19 24-35=-11 28-30=-2
Har bir juftlik yigʻindisini hisoblang.
a=-84 b=10
Yechim – -74 yigʻindisini beruvchi juftlik.
\left(7x^{2}-84x\right)+\left(10x-120\right)
7x^{2}-74x-120 ni \left(7x^{2}-84x\right)+\left(10x-120\right) sifatida qaytadan yozish.
7x\left(x-12\right)+10\left(x-12\right)
Birinchi guruhda 7x ni va ikkinchi guruhda 10 ni faktordan chiqaring.
\left(x-12\right)\left(7x+10\right)
Distributiv funktsiyasidan foydalangan holda x-12 umumiy terminini chiqaring.
7x^{2}-74x-120=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-74\right)±\sqrt{\left(-74\right)^{2}-4\times 7\left(-120\right)}}{2\times 7}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-74\right)±\sqrt{5476-4\times 7\left(-120\right)}}{2\times 7}
-74 kvadratini chiqarish.
x=\frac{-\left(-74\right)±\sqrt{5476-28\left(-120\right)}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-74\right)±\sqrt{5476+3360}}{2\times 7}
-28 ni -120 marotabaga ko'paytirish.
x=\frac{-\left(-74\right)±\sqrt{8836}}{2\times 7}
5476 ni 3360 ga qo'shish.
x=\frac{-\left(-74\right)±94}{2\times 7}
8836 ning kvadrat ildizini chiqarish.
x=\frac{74±94}{2\times 7}
-74 ning teskarisi 74 ga teng.
x=\frac{74±94}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{168}{14}
x=\frac{74±94}{14} tenglamasini yeching, bunda ± musbat. 74 ni 94 ga qo'shish.
x=12
168 ni 14 ga bo'lish.
x=-\frac{20}{14}
x=\frac{74±94}{14} tenglamasini yeching, bunda ± manfiy. 74 dan 94 ni ayirish.
x=-\frac{10}{7}
\frac{-20}{14} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
7x^{2}-74x-120=7\left(x-12\right)\left(x-\left(-\frac{10}{7}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 12 ga va x_{2} uchun -\frac{10}{7} ga bo‘ling.
7x^{2}-74x-120=7\left(x-12\right)\left(x+\frac{10}{7}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
7x^{2}-74x-120=7\left(x-12\right)\times \frac{7x+10}{7}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{10}{7} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
7x^{2}-74x-120=\left(x-12\right)\left(7x+10\right)
7 va 7 ichida eng katta umumiy 7 faktorini bekor qiling.