Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

7x^{2}+2x+9=8
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
7x^{2}+2x+9-8=8-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
7x^{2}+2x+9-8=0
O‘zidan 8 ayirilsa 0 qoladi.
7x^{2}+2x+1=0
9 dan 8 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\times 7}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, 2 ni b va 1 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times 7}}{2\times 7}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-28}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{-24}}{2\times 7}
4 ni -28 ga qo'shish.
x=\frac{-2±2\sqrt{6}i}{2\times 7}
-24 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{6}i}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{-2+2\sqrt{6}i}{14}
x=\frac{-2±2\sqrt{6}i}{14} tenglamasini yeching, bunda ± musbat. -2 ni 2i\sqrt{6} ga qo'shish.
x=\frac{-1+\sqrt{6}i}{7}
-2+2i\sqrt{6} ni 14 ga bo'lish.
x=\frac{-2\sqrt{6}i-2}{14}
x=\frac{-2±2\sqrt{6}i}{14} tenglamasini yeching, bunda ± manfiy. -2 dan 2i\sqrt{6} ni ayirish.
x=\frac{-\sqrt{6}i-1}{7}
-2-2i\sqrt{6} ni 14 ga bo'lish.
x=\frac{-1+\sqrt{6}i}{7} x=\frac{-\sqrt{6}i-1}{7}
Tenglama yechildi.
7x^{2}+2x+9=8
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
7x^{2}+2x+9-9=8-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
7x^{2}+2x=8-9
O‘zidan 9 ayirilsa 0 qoladi.
7x^{2}+2x=-1
8 dan 9 ni ayirish.
\frac{7x^{2}+2x}{7}=-\frac{1}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}+\frac{2}{7}x=-\frac{1}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{2}{7}x+\left(\frac{1}{7}\right)^{2}=-\frac{1}{7}+\left(\frac{1}{7}\right)^{2}
\frac{2}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{7} olish uchun. Keyin, \frac{1}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{2}{7}x+\frac{1}{49}=-\frac{1}{7}+\frac{1}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{7} kvadratini chiqarish.
x^{2}+\frac{2}{7}x+\frac{1}{49}=-\frac{6}{49}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{7} ni \frac{1}{49} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{7}\right)^{2}=-\frac{6}{49}
x^{2}+\frac{2}{7}x+\frac{1}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{7}\right)^{2}}=\sqrt{-\frac{6}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{7}=\frac{\sqrt{6}i}{7} x+\frac{1}{7}=-\frac{\sqrt{6}i}{7}
Qisqartirish.
x=\frac{-1+\sqrt{6}i}{7} x=\frac{-\sqrt{6}i-1}{7}
Tenglamaning ikkala tarafidan \frac{1}{7} ni ayirish.