Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

7x^{2}+2-30x=-10
Ikkala tarafdan 30x ni ayirish.
7x^{2}+2-30x+10=0
10 ni ikki tarafga qo’shing.
7x^{2}+12-30x=0
12 olish uchun 2 va 10'ni qo'shing.
7x^{2}-30x+12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 7\times 12}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, -30 ni b va 12 ni c bilan almashtiring.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 7\times 12}}{2\times 7}
-30 kvadratini chiqarish.
x=\frac{-\left(-30\right)±\sqrt{900-28\times 12}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-30\right)±\sqrt{900-336}}{2\times 7}
-28 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-30\right)±\sqrt{564}}{2\times 7}
900 ni -336 ga qo'shish.
x=\frac{-\left(-30\right)±2\sqrt{141}}{2\times 7}
564 ning kvadrat ildizini chiqarish.
x=\frac{30±2\sqrt{141}}{2\times 7}
-30 ning teskarisi 30 ga teng.
x=\frac{30±2\sqrt{141}}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{2\sqrt{141}+30}{14}
x=\frac{30±2\sqrt{141}}{14} tenglamasini yeching, bunda ± musbat. 30 ni 2\sqrt{141} ga qo'shish.
x=\frac{\sqrt{141}+15}{7}
30+2\sqrt{141} ni 14 ga bo'lish.
x=\frac{30-2\sqrt{141}}{14}
x=\frac{30±2\sqrt{141}}{14} tenglamasini yeching, bunda ± manfiy. 30 dan 2\sqrt{141} ni ayirish.
x=\frac{15-\sqrt{141}}{7}
30-2\sqrt{141} ni 14 ga bo'lish.
x=\frac{\sqrt{141}+15}{7} x=\frac{15-\sqrt{141}}{7}
Tenglama yechildi.
7x^{2}+2-30x=-10
Ikkala tarafdan 30x ni ayirish.
7x^{2}-30x=-10-2
Ikkala tarafdan 2 ni ayirish.
7x^{2}-30x=-12
-12 olish uchun -10 dan 2 ni ayirish.
\frac{7x^{2}-30x}{7}=-\frac{12}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}-\frac{30}{7}x=-\frac{12}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{30}{7}x+\left(-\frac{15}{7}\right)^{2}=-\frac{12}{7}+\left(-\frac{15}{7}\right)^{2}
-\frac{30}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{15}{7} olish uchun. Keyin, -\frac{15}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{30}{7}x+\frac{225}{49}=-\frac{12}{7}+\frac{225}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{15}{7} kvadratini chiqarish.
x^{2}-\frac{30}{7}x+\frac{225}{49}=\frac{141}{49}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{12}{7} ni \frac{225}{49} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{15}{7}\right)^{2}=\frac{141}{49}
x^{2}-\frac{30}{7}x+\frac{225}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{15}{7}\right)^{2}}=\sqrt{\frac{141}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{15}{7}=\frac{\sqrt{141}}{7} x-\frac{15}{7}=-\frac{\sqrt{141}}{7}
Qisqartirish.
x=\frac{\sqrt{141}+15}{7} x=\frac{15-\sqrt{141}}{7}
\frac{15}{7} ni tenglamaning ikkala tarafiga qo'shish.