Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

7x^{2}+12x+4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\times 7\times 4}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, 12 ni b va 4 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\times 7\times 4}}{2\times 7}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-28\times 4}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144-112}}{2\times 7}
-28 ni 4 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{32}}{2\times 7}
144 ni -112 ga qo'shish.
x=\frac{-12±4\sqrt{2}}{2\times 7}
32 ning kvadrat ildizini chiqarish.
x=\frac{-12±4\sqrt{2}}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{4\sqrt{2}-12}{14}
x=\frac{-12±4\sqrt{2}}{14} tenglamasini yeching, bunda ± musbat. -12 ni 4\sqrt{2} ga qo'shish.
x=\frac{2\sqrt{2}-6}{7}
-12+4\sqrt{2} ni 14 ga bo'lish.
x=\frac{-4\sqrt{2}-12}{14}
x=\frac{-12±4\sqrt{2}}{14} tenglamasini yeching, bunda ± manfiy. -12 dan 4\sqrt{2} ni ayirish.
x=\frac{-2\sqrt{2}-6}{7}
-12-4\sqrt{2} ni 14 ga bo'lish.
x=\frac{2\sqrt{2}-6}{7} x=\frac{-2\sqrt{2}-6}{7}
Tenglama yechildi.
7x^{2}+12x+4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
7x^{2}+12x+4-4=-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
7x^{2}+12x=-4
O‘zidan 4 ayirilsa 0 qoladi.
\frac{7x^{2}+12x}{7}=-\frac{4}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}+\frac{12}{7}x=-\frac{4}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{12}{7}x+\left(\frac{6}{7}\right)^{2}=-\frac{4}{7}+\left(\frac{6}{7}\right)^{2}
\frac{12}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{6}{7} olish uchun. Keyin, \frac{6}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{12}{7}x+\frac{36}{49}=-\frac{4}{7}+\frac{36}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{6}{7} kvadratini chiqarish.
x^{2}+\frac{12}{7}x+\frac{36}{49}=\frac{8}{49}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{7} ni \frac{36}{49} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{6}{7}\right)^{2}=\frac{8}{49}
x^{2}+\frac{12}{7}x+\frac{36}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{6}{7}\right)^{2}}=\sqrt{\frac{8}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{6}{7}=\frac{2\sqrt{2}}{7} x+\frac{6}{7}=-\frac{2\sqrt{2}}{7}
Qisqartirish.
x=\frac{2\sqrt{2}-6}{7} x=\frac{-2\sqrt{2}-6}{7}
Tenglamaning ikkala tarafidan \frac{6}{7} ni ayirish.