Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

7x^{2}-5x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 7\times 6}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, -5 ni b va 6 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 7\times 6}}{2\times 7}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-28\times 6}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25-168}}{2\times 7}
-28 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{-143}}{2\times 7}
25 ni -168 ga qo'shish.
x=\frac{-\left(-5\right)±\sqrt{143}i}{2\times 7}
-143 ning kvadrat ildizini chiqarish.
x=\frac{5±\sqrt{143}i}{2\times 7}
-5 ning teskarisi 5 ga teng.
x=\frac{5±\sqrt{143}i}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{5+\sqrt{143}i}{14}
x=\frac{5±\sqrt{143}i}{14} tenglamasini yeching, bunda ± musbat. 5 ni i\sqrt{143} ga qo'shish.
x=\frac{-\sqrt{143}i+5}{14}
x=\frac{5±\sqrt{143}i}{14} tenglamasini yeching, bunda ± manfiy. 5 dan i\sqrt{143} ni ayirish.
x=\frac{5+\sqrt{143}i}{14} x=\frac{-\sqrt{143}i+5}{14}
Tenglama yechildi.
7x^{2}-5x+6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
7x^{2}-5x+6-6=-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
7x^{2}-5x=-6
O‘zidan 6 ayirilsa 0 qoladi.
\frac{7x^{2}-5x}{7}=-\frac{6}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}-\frac{5}{7}x=-\frac{6}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{7}x+\left(-\frac{5}{14}\right)^{2}=-\frac{6}{7}+\left(-\frac{5}{14}\right)^{2}
-\frac{5}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{14} olish uchun. Keyin, -\frac{5}{14} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{7}x+\frac{25}{196}=-\frac{6}{7}+\frac{25}{196}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{14} kvadratini chiqarish.
x^{2}-\frac{5}{7}x+\frac{25}{196}=-\frac{143}{196}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{6}{7} ni \frac{25}{196} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{14}\right)^{2}=-\frac{143}{196}
x^{2}-\frac{5}{7}x+\frac{25}{196} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{14}\right)^{2}}=\sqrt{-\frac{143}{196}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{14}=\frac{\sqrt{143}i}{14} x-\frac{5}{14}=-\frac{\sqrt{143}i}{14}
Qisqartirish.
x=\frac{5+\sqrt{143}i}{14} x=\frac{-\sqrt{143}i+5}{14}
\frac{5}{14} ni tenglamaning ikkala tarafiga qo'shish.