x uchun yechish
x=72\sqrt{2}-1\approx 100,823376491
Grafik
Baham ko'rish
Klipbordga nusxa olish
126\sqrt{2}-\left(x+1\right)=18\sqrt{18}
Tenglamaning ikkala tarafini 18 ga ko'paytirish.
126\sqrt{2}-x-1=18\sqrt{18}
x+1 teskarisini topish uchun har birining teskarisini toping.
126\sqrt{2}-x-1=18\times 3\sqrt{2}
Faktor: 18=3^{2}\times 2. \sqrt{3^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{3^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 3^{2} ning kvadrat ildizini chiqarish.
126\sqrt{2}-x-1=54\sqrt{2}
54 hosil qilish uchun 18 va 3 ni ko'paytirish.
-x-1=54\sqrt{2}-126\sqrt{2}
Ikkala tarafdan 126\sqrt{2} ni ayirish.
-x-1=-72\sqrt{2}
-72\sqrt{2} ni olish uchun 54\sqrt{2} va -126\sqrt{2} ni birlashtirish.
-x=-72\sqrt{2}+1
1 ni ikki tarafga qo’shing.
-x=1-72\sqrt{2}
Tenglama standart shaklda.
\frac{-x}{-1}=\frac{1-72\sqrt{2}}{-1}
Ikki tarafini -1 ga bo‘ling.
x=\frac{1-72\sqrt{2}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x=72\sqrt{2}-1
-72\sqrt{2}+1 ni -1 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}