x uchun yechish
x=4\sqrt{14}+14\approx 28,966629547
x=14-4\sqrt{14}\approx -0,966629547
Grafik
Baham ko'rish
Klipbordga nusxa olish
7\times 8+8\times 7x=2xx
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
7\times 8+8\times 7x=2x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
56+56x=2x^{2}
56 hosil qilish uchun 7 va 8 ni ko'paytirish. 56 hosil qilish uchun 8 va 7 ni ko'paytirish.
56+56x-2x^{2}=0
Ikkala tarafdan 2x^{2} ni ayirish.
-2x^{2}+56x+56=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-56±\sqrt{56^{2}-4\left(-2\right)\times 56}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 56 ni b va 56 ni c bilan almashtiring.
x=\frac{-56±\sqrt{3136-4\left(-2\right)\times 56}}{2\left(-2\right)}
56 kvadratini chiqarish.
x=\frac{-56±\sqrt{3136+8\times 56}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-56±\sqrt{3136+448}}{2\left(-2\right)}
8 ni 56 marotabaga ko'paytirish.
x=\frac{-56±\sqrt{3584}}{2\left(-2\right)}
3136 ni 448 ga qo'shish.
x=\frac{-56±16\sqrt{14}}{2\left(-2\right)}
3584 ning kvadrat ildizini chiqarish.
x=\frac{-56±16\sqrt{14}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{16\sqrt{14}-56}{-4}
x=\frac{-56±16\sqrt{14}}{-4} tenglamasini yeching, bunda ± musbat. -56 ni 16\sqrt{14} ga qo'shish.
x=14-4\sqrt{14}
-56+16\sqrt{14} ni -4 ga bo'lish.
x=\frac{-16\sqrt{14}-56}{-4}
x=\frac{-56±16\sqrt{14}}{-4} tenglamasini yeching, bunda ± manfiy. -56 dan 16\sqrt{14} ni ayirish.
x=4\sqrt{14}+14
-56-16\sqrt{14} ni -4 ga bo'lish.
x=14-4\sqrt{14} x=4\sqrt{14}+14
Tenglama yechildi.
7\times 8+8\times 7x=2xx
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
7\times 8+8\times 7x=2x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
56+56x=2x^{2}
56 hosil qilish uchun 7 va 8 ni ko'paytirish. 56 hosil qilish uchun 8 va 7 ni ko'paytirish.
56+56x-2x^{2}=0
Ikkala tarafdan 2x^{2} ni ayirish.
56x-2x^{2}=-56
Ikkala tarafdan 56 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-2x^{2}+56x=-56
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+56x}{-2}=-\frac{56}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{56}{-2}x=-\frac{56}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-28x=-\frac{56}{-2}
56 ni -2 ga bo'lish.
x^{2}-28x=28
-56 ni -2 ga bo'lish.
x^{2}-28x+\left(-14\right)^{2}=28+\left(-14\right)^{2}
-28 ni bo‘lish, x shartining koeffitsienti, 2 ga -14 olish uchun. Keyin, -14 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-28x+196=28+196
-14 kvadratini chiqarish.
x^{2}-28x+196=224
28 ni 196 ga qo'shish.
\left(x-14\right)^{2}=224
x^{2}-28x+196 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-14\right)^{2}}=\sqrt{224}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-14=4\sqrt{14} x-14=-4\sqrt{14}
Qisqartirish.
x=4\sqrt{14}+14 x=14-4\sqrt{14}
14 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}