a_n uchun yechish
a_{n}=\frac{n\left(2n+1\right)}{14}
n uchun yechish
n=\frac{\sqrt{112a_{n}+1}-1}{4}
n=\frac{-\sqrt{112a_{n}+1}-1}{4}\text{, }a_{n}\geq -\frac{1}{112}
Baham ko'rish
Klipbordga nusxa olish
14a_{n}=n\left(2n+1\right)
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
14a_{n}=2n^{2}+n
n ga 2n+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{14a_{n}}{14}=\frac{n\left(2n+1\right)}{14}
Ikki tarafini 14 ga bo‘ling.
a_{n}=\frac{n\left(2n+1\right)}{14}
14 ga bo'lish 14 ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}