Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

15x^{2}-5x=7
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
15x^{2}-5x-7=0
Ikkala tarafdan 7 ni ayirish.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 15\left(-7\right)}}{2\times 15}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 15 ni a, -5 ni b va -7 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 15\left(-7\right)}}{2\times 15}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-60\left(-7\right)}}{2\times 15}
-4 ni 15 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25+420}}{2\times 15}
-60 ni -7 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{445}}{2\times 15}
25 ni 420 ga qo'shish.
x=\frac{5±\sqrt{445}}{2\times 15}
-5 ning teskarisi 5 ga teng.
x=\frac{5±\sqrt{445}}{30}
2 ni 15 marotabaga ko'paytirish.
x=\frac{\sqrt{445}+5}{30}
x=\frac{5±\sqrt{445}}{30} tenglamasini yeching, bunda ± musbat. 5 ni \sqrt{445} ga qo'shish.
x=\frac{\sqrt{445}}{30}+\frac{1}{6}
5+\sqrt{445} ni 30 ga bo'lish.
x=\frac{5-\sqrt{445}}{30}
x=\frac{5±\sqrt{445}}{30} tenglamasini yeching, bunda ± manfiy. 5 dan \sqrt{445} ni ayirish.
x=-\frac{\sqrt{445}}{30}+\frac{1}{6}
5-\sqrt{445} ni 30 ga bo'lish.
x=\frac{\sqrt{445}}{30}+\frac{1}{6} x=-\frac{\sqrt{445}}{30}+\frac{1}{6}
Tenglama yechildi.
15x^{2}-5x=7
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{15x^{2}-5x}{15}=\frac{7}{15}
Ikki tarafini 15 ga bo‘ling.
x^{2}+\left(-\frac{5}{15}\right)x=\frac{7}{15}
15 ga bo'lish 15 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{3}x=\frac{7}{15}
\frac{-5}{15} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{7}{15}+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{6} olish uchun. Keyin, -\frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{7}{15}+\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{6} kvadratini chiqarish.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{89}{180}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{15} ni \frac{1}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{6}\right)^{2}=\frac{89}{180}
x^{2}-\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{89}{180}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{6}=\frac{\sqrt{445}}{30} x-\frac{1}{6}=-\frac{\sqrt{445}}{30}
Qisqartirish.
x=\frac{\sqrt{445}}{30}+\frac{1}{6} x=-\frac{\sqrt{445}}{30}+\frac{1}{6}
\frac{1}{6} ni tenglamaning ikkala tarafiga qo'shish.