x uchun yechish
x=\frac{9y+29}{2\left(3y+2\right)}
y\neq -\frac{2}{3}
y uchun yechish
y=-\frac{4x-29}{3\left(2x-3\right)}
x\neq \frac{3}{2}
Grafik
Baham ko'rish
Klipbordga nusxa olish
6xy+4x-7=22+9y
9y ni ikki tarafga qo’shing.
6xy+4x=22+9y+7
7 ni ikki tarafga qo’shing.
6xy+4x=29+9y
29 olish uchun 22 va 7'ni qo'shing.
\left(6y+4\right)x=29+9y
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(6y+4\right)x=9y+29
Tenglama standart shaklda.
\frac{\left(6y+4\right)x}{6y+4}=\frac{9y+29}{6y+4}
Ikki tarafini 6y+4 ga bo‘ling.
x=\frac{9y+29}{6y+4}
6y+4 ga bo'lish 6y+4 ga ko'paytirishni bekor qiladi.
x=\frac{9y+29}{2\left(3y+2\right)}
29+9y ni 6y+4 ga bo'lish.
6xy-9y-7=22-4x
Ikkala tarafdan 4x ni ayirish.
6xy-9y=22-4x+7
7 ni ikki tarafga qo’shing.
6xy-9y=29-4x
29 olish uchun 22 va 7'ni qo'shing.
\left(6x-9\right)y=29-4x
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(6x-9\right)y}{6x-9}=\frac{29-4x}{6x-9}
Ikki tarafini 6x-9 ga bo‘ling.
y=\frac{29-4x}{6x-9}
6x-9 ga bo'lish 6x-9 ga ko'paytirishni bekor qiladi.
y=\frac{29-4x}{3\left(2x-3\right)}
29-4x ni 6x-9 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}