x uchun yechish
x = \frac{\sqrt{37} - 1}{2} \approx 2,541381265
x=\frac{-\sqrt{37}-1}{2}\approx -3,541381265
Grafik
Baham ko'rish
Klipbordga nusxa olish
6x+9x^{2}+3x+9=90
3x ga 3x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x+9x^{2}+9=90
9x ni olish uchun 6x va 3x ni birlashtirish.
9x+9x^{2}+9-90=0
Ikkala tarafdan 90 ni ayirish.
9x+9x^{2}-81=0
-81 olish uchun 9 dan 90 ni ayirish.
9x^{2}+9x-81=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-9±\sqrt{9^{2}-4\times 9\left(-81\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 9 ni b va -81 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\times 9\left(-81\right)}}{2\times 9}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81-36\left(-81\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81+2916}}{2\times 9}
-36 ni -81 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{2997}}{2\times 9}
81 ni 2916 ga qo'shish.
x=\frac{-9±9\sqrt{37}}{2\times 9}
2997 ning kvadrat ildizini chiqarish.
x=\frac{-9±9\sqrt{37}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{9\sqrt{37}-9}{18}
x=\frac{-9±9\sqrt{37}}{18} tenglamasini yeching, bunda ± musbat. -9 ni 9\sqrt{37} ga qo'shish.
x=\frac{\sqrt{37}-1}{2}
-9+9\sqrt{37} ni 18 ga bo'lish.
x=\frac{-9\sqrt{37}-9}{18}
x=\frac{-9±9\sqrt{37}}{18} tenglamasini yeching, bunda ± manfiy. -9 dan 9\sqrt{37} ni ayirish.
x=\frac{-\sqrt{37}-1}{2}
-9-9\sqrt{37} ni 18 ga bo'lish.
x=\frac{\sqrt{37}-1}{2} x=\frac{-\sqrt{37}-1}{2}
Tenglama yechildi.
6x+9x^{2}+3x+9=90
3x ga 3x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x+9x^{2}+9=90
9x ni olish uchun 6x va 3x ni birlashtirish.
9x+9x^{2}=90-9
Ikkala tarafdan 9 ni ayirish.
9x+9x^{2}=81
81 olish uchun 90 dan 9 ni ayirish.
9x^{2}+9x=81
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{9x^{2}+9x}{9}=\frac{81}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\frac{9}{9}x=\frac{81}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}+x=\frac{81}{9}
9 ni 9 ga bo'lish.
x^{2}+x=9
81 ni 9 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=9+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=9+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{37}{4}
9 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=\frac{37}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{37}}{2} x+\frac{1}{2}=-\frac{\sqrt{37}}{2}
Qisqartirish.
x=\frac{\sqrt{37}-1}{2} x=\frac{-\sqrt{37}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}