Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

69x^{2}+1157x-6760=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1157±\sqrt{1157^{2}-4\times 69\left(-6760\right)}}{2\times 69}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 69 ni a, 1157 ni b va -6760 ni c bilan almashtiring.
x=\frac{-1157±\sqrt{1338649-4\times 69\left(-6760\right)}}{2\times 69}
1157 kvadratini chiqarish.
x=\frac{-1157±\sqrt{1338649-276\left(-6760\right)}}{2\times 69}
-4 ni 69 marotabaga ko'paytirish.
x=\frac{-1157±\sqrt{1338649+1865760}}{2\times 69}
-276 ni -6760 marotabaga ko'paytirish.
x=\frac{-1157±\sqrt{3204409}}{2\times 69}
1338649 ni 1865760 ga qo'shish.
x=\frac{-1157±13\sqrt{18961}}{2\times 69}
3204409 ning kvadrat ildizini chiqarish.
x=\frac{-1157±13\sqrt{18961}}{138}
2 ni 69 marotabaga ko'paytirish.
x=\frac{13\sqrt{18961}-1157}{138}
x=\frac{-1157±13\sqrt{18961}}{138} tenglamasini yeching, bunda ± musbat. -1157 ni 13\sqrt{18961} ga qo'shish.
x=\frac{-13\sqrt{18961}-1157}{138}
x=\frac{-1157±13\sqrt{18961}}{138} tenglamasini yeching, bunda ± manfiy. -1157 dan 13\sqrt{18961} ni ayirish.
x=\frac{13\sqrt{18961}-1157}{138} x=\frac{-13\sqrt{18961}-1157}{138}
Tenglama yechildi.
69x^{2}+1157x-6760=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
69x^{2}+1157x-6760-\left(-6760\right)=-\left(-6760\right)
6760 ni tenglamaning ikkala tarafiga qo'shish.
69x^{2}+1157x=-\left(-6760\right)
O‘zidan -6760 ayirilsa 0 qoladi.
69x^{2}+1157x=6760
0 dan -6760 ni ayirish.
\frac{69x^{2}+1157x}{69}=\frac{6760}{69}
Ikki tarafini 69 ga bo‘ling.
x^{2}+\frac{1157}{69}x=\frac{6760}{69}
69 ga bo'lish 69 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1157}{69}x+\left(\frac{1157}{138}\right)^{2}=\frac{6760}{69}+\left(\frac{1157}{138}\right)^{2}
\frac{1157}{69} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1157}{138} olish uchun. Keyin, \frac{1157}{138} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1157}{69}x+\frac{1338649}{19044}=\frac{6760}{69}+\frac{1338649}{19044}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1157}{138} kvadratini chiqarish.
x^{2}+\frac{1157}{69}x+\frac{1338649}{19044}=\frac{3204409}{19044}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{6760}{69} ni \frac{1338649}{19044} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1157}{138}\right)^{2}=\frac{3204409}{19044}
x^{2}+\frac{1157}{69}x+\frac{1338649}{19044} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1157}{138}\right)^{2}}=\sqrt{\frac{3204409}{19044}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1157}{138}=\frac{13\sqrt{18961}}{138} x+\frac{1157}{138}=-\frac{13\sqrt{18961}}{138}
Qisqartirish.
x=\frac{13\sqrt{18961}-1157}{138} x=\frac{-13\sqrt{18961}-1157}{138}
Tenglamaning ikkala tarafidan \frac{1157}{138} ni ayirish.