Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=\frac{120-33\sqrt{15}}{68}
68 ga bo'lish 68 ga ko'paytirishni bekor qiladi.
x^{2}=-\frac{33\sqrt{15}}{68}+\frac{30}{17}
120-33\sqrt{15} ni 68 ga bo'lish.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34} x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
68x^{2}-120=-33\sqrt{15}
Ikkala tarafdan 120 ni ayirish.
68x^{2}-120+33\sqrt{15}=0
33\sqrt{15} ni ikki tarafga qo’shing.
68x^{2}+33\sqrt{15}-120=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 68\left(33\sqrt{15}-120\right)}}{2\times 68}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 68 ni a, 0 ni b va -120+33\sqrt{15} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 68\left(33\sqrt{15}-120\right)}}{2\times 68}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-272\left(33\sqrt{15}-120\right)}}{2\times 68}
-4 ni 68 marotabaga ko'paytirish.
x=\frac{0±\sqrt{32640-8976\sqrt{15}}}{2\times 68}
-272 ni -120+33\sqrt{15} marotabaga ko'paytirish.
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{2\times 68}
32640-8976\sqrt{15} ning kvadrat ildizini chiqarish.
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136}
2 ni 68 marotabaga ko'paytirish.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34}
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136} tenglamasini yeching, bunda ± musbat.
x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136} tenglamasini yeching, bunda ± manfiy.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34} x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Tenglama yechildi.