x uchun yechish (complex solution)
x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}\approx -0-0,338865981i
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34}\approx 0,338865981i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}=\frac{120-33\sqrt{15}}{68}
68 ga bo'lish 68 ga ko'paytirishni bekor qiladi.
x^{2}=-\frac{33\sqrt{15}}{68}+\frac{30}{17}
120-33\sqrt{15} ni 68 ga bo'lish.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34} x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
68x^{2}-120=-33\sqrt{15}
Ikkala tarafdan 120 ni ayirish.
68x^{2}-120+33\sqrt{15}=0
33\sqrt{15} ni ikki tarafga qo’shing.
68x^{2}+33\sqrt{15}-120=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 68\left(33\sqrt{15}-120\right)}}{2\times 68}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 68 ni a, 0 ni b va -120+33\sqrt{15} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 68\left(33\sqrt{15}-120\right)}}{2\times 68}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-272\left(33\sqrt{15}-120\right)}}{2\times 68}
-4 ni 68 marotabaga ko'paytirish.
x=\frac{0±\sqrt{32640-8976\sqrt{15}}}{2\times 68}
-272 ni -120+33\sqrt{15} marotabaga ko'paytirish.
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{2\times 68}
32640-8976\sqrt{15} ning kvadrat ildizini chiqarish.
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136}
2 ni 68 marotabaga ko'paytirish.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34}
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136} tenglamasini yeching, bunda ± musbat.
x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136} tenglamasini yeching, bunda ± manfiy.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34} x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}