x uchun yechish
x=79
x=86
Grafik
Baham ko'rish
Klipbordga nusxa olish
6794+x^{2}-165x=0
Ikkala tarafdan 165x ni ayirish.
x^{2}-165x+6794=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-165\right)±\sqrt{\left(-165\right)^{2}-4\times 6794}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -165 ni b va 6794 ni c bilan almashtiring.
x=\frac{-\left(-165\right)±\sqrt{27225-4\times 6794}}{2}
-165 kvadratini chiqarish.
x=\frac{-\left(-165\right)±\sqrt{27225-27176}}{2}
-4 ni 6794 marotabaga ko'paytirish.
x=\frac{-\left(-165\right)±\sqrt{49}}{2}
27225 ni -27176 ga qo'shish.
x=\frac{-\left(-165\right)±7}{2}
49 ning kvadrat ildizini chiqarish.
x=\frac{165±7}{2}
-165 ning teskarisi 165 ga teng.
x=\frac{172}{2}
x=\frac{165±7}{2} tenglamasini yeching, bunda ± musbat. 165 ni 7 ga qo'shish.
x=86
172 ni 2 ga bo'lish.
x=\frac{158}{2}
x=\frac{165±7}{2} tenglamasini yeching, bunda ± manfiy. 165 dan 7 ni ayirish.
x=79
158 ni 2 ga bo'lish.
x=86 x=79
Tenglama yechildi.
6794+x^{2}-165x=0
Ikkala tarafdan 165x ni ayirish.
x^{2}-165x=-6794
Ikkala tarafdan 6794 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-165x+\left(-\frac{165}{2}\right)^{2}=-6794+\left(-\frac{165}{2}\right)^{2}
-165 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{165}{2} olish uchun. Keyin, -\frac{165}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-165x+\frac{27225}{4}=-6794+\frac{27225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{165}{2} kvadratini chiqarish.
x^{2}-165x+\frac{27225}{4}=\frac{49}{4}
-6794 ni \frac{27225}{4} ga qo'shish.
\left(x-\frac{165}{2}\right)^{2}=\frac{49}{4}
x^{2}-165x+\frac{27225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{165}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{165}{2}=\frac{7}{2} x-\frac{165}{2}=-\frac{7}{2}
Qisqartirish.
x=86 x=79
\frac{165}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}