Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6794+x^{2}-165x=0
Ikkala tarafdan 165x ni ayirish.
x^{2}-165x+6794=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-165\right)±\sqrt{\left(-165\right)^{2}-4\times 6794}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -165 ni b va 6794 ni c bilan almashtiring.
x=\frac{-\left(-165\right)±\sqrt{27225-4\times 6794}}{2}
-165 kvadratini chiqarish.
x=\frac{-\left(-165\right)±\sqrt{27225-27176}}{2}
-4 ni 6794 marotabaga ko'paytirish.
x=\frac{-\left(-165\right)±\sqrt{49}}{2}
27225 ni -27176 ga qo'shish.
x=\frac{-\left(-165\right)±7}{2}
49 ning kvadrat ildizini chiqarish.
x=\frac{165±7}{2}
-165 ning teskarisi 165 ga teng.
x=\frac{172}{2}
x=\frac{165±7}{2} tenglamasini yeching, bunda ± musbat. 165 ni 7 ga qo'shish.
x=86
172 ni 2 ga bo'lish.
x=\frac{158}{2}
x=\frac{165±7}{2} tenglamasini yeching, bunda ± manfiy. 165 dan 7 ni ayirish.
x=79
158 ni 2 ga bo'lish.
x=86 x=79
Tenglama yechildi.
6794+x^{2}-165x=0
Ikkala tarafdan 165x ni ayirish.
x^{2}-165x=-6794
Ikkala tarafdan 6794 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-165x+\left(-\frac{165}{2}\right)^{2}=-6794+\left(-\frac{165}{2}\right)^{2}
-165 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{165}{2} olish uchun. Keyin, -\frac{165}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-165x+\frac{27225}{4}=-6794+\frac{27225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{165}{2} kvadratini chiqarish.
x^{2}-165x+\frac{27225}{4}=\frac{49}{4}
-6794 ni \frac{27225}{4} ga qo'shish.
\left(x-\frac{165}{2}\right)^{2}=\frac{49}{4}
x^{2}-165x+\frac{27225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{165}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{165}{2}=\frac{7}{2} x-\frac{165}{2}=-\frac{7}{2}
Qisqartirish.
x=86 x=79
\frac{165}{2} ni tenglamaning ikkala tarafiga qo'shish.