6500 = n [ 595 - 15 n )
n uchun yechish
n=\frac{119+\sqrt{1439}i}{6}\approx 19,833333333+6,322358913i
n=\frac{-\sqrt{1439}i+119}{6}\approx 19,833333333-6,322358913i
Baham ko'rish
Klipbordga nusxa olish
6500=595n-15n^{2}
n ga 595-15n ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
595n-15n^{2}=6500
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
595n-15n^{2}-6500=0
Ikkala tarafdan 6500 ni ayirish.
-15n^{2}+595n-6500=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-595±\sqrt{595^{2}-4\left(-15\right)\left(-6500\right)}}{2\left(-15\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -15 ni a, 595 ni b va -6500 ni c bilan almashtiring.
n=\frac{-595±\sqrt{354025-4\left(-15\right)\left(-6500\right)}}{2\left(-15\right)}
595 kvadratini chiqarish.
n=\frac{-595±\sqrt{354025+60\left(-6500\right)}}{2\left(-15\right)}
-4 ni -15 marotabaga ko'paytirish.
n=\frac{-595±\sqrt{354025-390000}}{2\left(-15\right)}
60 ni -6500 marotabaga ko'paytirish.
n=\frac{-595±\sqrt{-35975}}{2\left(-15\right)}
354025 ni -390000 ga qo'shish.
n=\frac{-595±5\sqrt{1439}i}{2\left(-15\right)}
-35975 ning kvadrat ildizini chiqarish.
n=\frac{-595±5\sqrt{1439}i}{-30}
2 ni -15 marotabaga ko'paytirish.
n=\frac{-595+5\sqrt{1439}i}{-30}
n=\frac{-595±5\sqrt{1439}i}{-30} tenglamasini yeching, bunda ± musbat. -595 ni 5i\sqrt{1439} ga qo'shish.
n=\frac{-\sqrt{1439}i+119}{6}
-595+5i\sqrt{1439} ni -30 ga bo'lish.
n=\frac{-5\sqrt{1439}i-595}{-30}
n=\frac{-595±5\sqrt{1439}i}{-30} tenglamasini yeching, bunda ± manfiy. -595 dan 5i\sqrt{1439} ni ayirish.
n=\frac{119+\sqrt{1439}i}{6}
-595-5i\sqrt{1439} ni -30 ga bo'lish.
n=\frac{-\sqrt{1439}i+119}{6} n=\frac{119+\sqrt{1439}i}{6}
Tenglama yechildi.
6500=595n-15n^{2}
n ga 595-15n ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
595n-15n^{2}=6500
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-15n^{2}+595n=6500
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-15n^{2}+595n}{-15}=\frac{6500}{-15}
Ikki tarafini -15 ga bo‘ling.
n^{2}+\frac{595}{-15}n=\frac{6500}{-15}
-15 ga bo'lish -15 ga ko'paytirishni bekor qiladi.
n^{2}-\frac{119}{3}n=\frac{6500}{-15}
\frac{595}{-15} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n^{2}-\frac{119}{3}n=-\frac{1300}{3}
\frac{6500}{-15} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n^{2}-\frac{119}{3}n+\left(-\frac{119}{6}\right)^{2}=-\frac{1300}{3}+\left(-\frac{119}{6}\right)^{2}
-\frac{119}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{119}{6} olish uchun. Keyin, -\frac{119}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-\frac{119}{3}n+\frac{14161}{36}=-\frac{1300}{3}+\frac{14161}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{119}{6} kvadratini chiqarish.
n^{2}-\frac{119}{3}n+\frac{14161}{36}=-\frac{1439}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1300}{3} ni \frac{14161}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(n-\frac{119}{6}\right)^{2}=-\frac{1439}{36}
n^{2}-\frac{119}{3}n+\frac{14161}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{119}{6}\right)^{2}}=\sqrt{-\frac{1439}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{119}{6}=\frac{\sqrt{1439}i}{6} n-\frac{119}{6}=-\frac{\sqrt{1439}i}{6}
Qisqartirish.
n=\frac{119+\sqrt{1439}i}{6} n=\frac{-\sqrt{1439}i+119}{6}
\frac{119}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}