Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+9x+5=65
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2x^{2}+9x+5-65=0
Ikkala tarafdan 65 ni ayirish.
2x^{2}+9x-60=0
-60 olish uchun 5 dan 65 ni ayirish.
x=\frac{-9±\sqrt{9^{2}-4\times 2\left(-60\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 9 ni b va -60 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\times 2\left(-60\right)}}{2\times 2}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81-8\left(-60\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81+480}}{2\times 2}
-8 ni -60 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{561}}{2\times 2}
81 ni 480 ga qo'shish.
x=\frac{-9±\sqrt{561}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{561}-9}{4}
x=\frac{-9±\sqrt{561}}{4} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{561} ga qo'shish.
x=\frac{-\sqrt{561}-9}{4}
x=\frac{-9±\sqrt{561}}{4} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{561} ni ayirish.
x=\frac{\sqrt{561}-9}{4} x=\frac{-\sqrt{561}-9}{4}
Tenglama yechildi.
2x^{2}+9x+5=65
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2x^{2}+9x=65-5
Ikkala tarafdan 5 ni ayirish.
2x^{2}+9x=60
60 olish uchun 65 dan 5 ni ayirish.
\frac{2x^{2}+9x}{2}=\frac{60}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{9}{2}x=\frac{60}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{9}{2}x=30
60 ni 2 ga bo'lish.
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=30+\left(\frac{9}{4}\right)^{2}
\frac{9}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{4} olish uchun. Keyin, \frac{9}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{9}{2}x+\frac{81}{16}=30+\frac{81}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{4} kvadratini chiqarish.
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{561}{16}
30 ni \frac{81}{16} ga qo'shish.
\left(x+\frac{9}{4}\right)^{2}=\frac{561}{16}
x^{2}+\frac{9}{2}x+\frac{81}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{561}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{4}=\frac{\sqrt{561}}{4} x+\frac{9}{4}=-\frac{\sqrt{561}}{4}
Qisqartirish.
x=\frac{\sqrt{561}-9}{4} x=\frac{-\sqrt{561}-9}{4}
Tenglamaning ikkala tarafidan \frac{9}{4} ni ayirish.