x uchun yechish
x = \frac{\sqrt{561} - 9}{4} \approx 3,671359641
x=\frac{-\sqrt{561}-9}{4}\approx -8,171359641
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}+9x+5=65
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2x^{2}+9x+5-65=0
Ikkala tarafdan 65 ni ayirish.
2x^{2}+9x-60=0
-60 olish uchun 5 dan 65 ni ayirish.
x=\frac{-9±\sqrt{9^{2}-4\times 2\left(-60\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 9 ni b va -60 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\times 2\left(-60\right)}}{2\times 2}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81-8\left(-60\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81+480}}{2\times 2}
-8 ni -60 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{561}}{2\times 2}
81 ni 480 ga qo'shish.
x=\frac{-9±\sqrt{561}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{561}-9}{4}
x=\frac{-9±\sqrt{561}}{4} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{561} ga qo'shish.
x=\frac{-\sqrt{561}-9}{4}
x=\frac{-9±\sqrt{561}}{4} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{561} ni ayirish.
x=\frac{\sqrt{561}-9}{4} x=\frac{-\sqrt{561}-9}{4}
Tenglama yechildi.
2x^{2}+9x+5=65
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2x^{2}+9x=65-5
Ikkala tarafdan 5 ni ayirish.
2x^{2}+9x=60
60 olish uchun 65 dan 5 ni ayirish.
\frac{2x^{2}+9x}{2}=\frac{60}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{9}{2}x=\frac{60}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{9}{2}x=30
60 ni 2 ga bo'lish.
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=30+\left(\frac{9}{4}\right)^{2}
\frac{9}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{4} olish uchun. Keyin, \frac{9}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{9}{2}x+\frac{81}{16}=30+\frac{81}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{4} kvadratini chiqarish.
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{561}{16}
30 ni \frac{81}{16} ga qo'shish.
\left(x+\frac{9}{4}\right)^{2}=\frac{561}{16}
x^{2}+\frac{9}{2}x+\frac{81}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{561}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{4}=\frac{\sqrt{561}}{4} x+\frac{9}{4}=-\frac{\sqrt{561}}{4}
Qisqartirish.
x=\frac{\sqrt{561}-9}{4} x=\frac{-\sqrt{561}-9}{4}
Tenglamaning ikkala tarafidan \frac{9}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}