Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

65y^{2}-23y-10=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
y=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 65\left(-10\right)}}{2\times 65}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-23\right)±\sqrt{529-4\times 65\left(-10\right)}}{2\times 65}
-23 kvadratini chiqarish.
y=\frac{-\left(-23\right)±\sqrt{529-260\left(-10\right)}}{2\times 65}
-4 ni 65 marotabaga ko'paytirish.
y=\frac{-\left(-23\right)±\sqrt{529+2600}}{2\times 65}
-260 ni -10 marotabaga ko'paytirish.
y=\frac{-\left(-23\right)±\sqrt{3129}}{2\times 65}
529 ni 2600 ga qo'shish.
y=\frac{23±\sqrt{3129}}{2\times 65}
-23 ning teskarisi 23 ga teng.
y=\frac{23±\sqrt{3129}}{130}
2 ni 65 marotabaga ko'paytirish.
y=\frac{\sqrt{3129}+23}{130}
y=\frac{23±\sqrt{3129}}{130} tenglamasini yeching, bunda ± musbat. 23 ni \sqrt{3129} ga qo'shish.
y=\frac{23-\sqrt{3129}}{130}
y=\frac{23±\sqrt{3129}}{130} tenglamasini yeching, bunda ± manfiy. 23 dan \sqrt{3129} ni ayirish.
65y^{2}-23y-10=65\left(y-\frac{\sqrt{3129}+23}{130}\right)\left(y-\frac{23-\sqrt{3129}}{130}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{23+\sqrt{3129}}{130} ga va x_{2} uchun \frac{23-\sqrt{3129}}{130} ga bo‘ling.