t uchun yechish
t=-1+2\sqrt{3}i\approx -1+3,464101615i
t=-2\sqrt{3}i-1\approx -1-3,464101615i
Baham ko'rish
Klipbordga nusxa olish
-10t-5t^{2}=65
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-10t-5t^{2}-65=0
Ikkala tarafdan 65 ni ayirish.
-5t^{2}-10t-65=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-5\right)\left(-65\right)}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, -10 ni b va -65 ni c bilan almashtiring.
t=\frac{-\left(-10\right)±\sqrt{100-4\left(-5\right)\left(-65\right)}}{2\left(-5\right)}
-10 kvadratini chiqarish.
t=\frac{-\left(-10\right)±\sqrt{100+20\left(-65\right)}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
t=\frac{-\left(-10\right)±\sqrt{100-1300}}{2\left(-5\right)}
20 ni -65 marotabaga ko'paytirish.
t=\frac{-\left(-10\right)±\sqrt{-1200}}{2\left(-5\right)}
100 ni -1300 ga qo'shish.
t=\frac{-\left(-10\right)±20\sqrt{3}i}{2\left(-5\right)}
-1200 ning kvadrat ildizini chiqarish.
t=\frac{10±20\sqrt{3}i}{2\left(-5\right)}
-10 ning teskarisi 10 ga teng.
t=\frac{10±20\sqrt{3}i}{-10}
2 ni -5 marotabaga ko'paytirish.
t=\frac{10+20\sqrt{3}i}{-10}
t=\frac{10±20\sqrt{3}i}{-10} tenglamasini yeching, bunda ± musbat. 10 ni 20i\sqrt{3} ga qo'shish.
t=-2\sqrt{3}i-1
10+20i\sqrt{3} ni -10 ga bo'lish.
t=\frac{-20\sqrt{3}i+10}{-10}
t=\frac{10±20\sqrt{3}i}{-10} tenglamasini yeching, bunda ± manfiy. 10 dan 20i\sqrt{3} ni ayirish.
t=-1+2\sqrt{3}i
10-20i\sqrt{3} ni -10 ga bo'lish.
t=-2\sqrt{3}i-1 t=-1+2\sqrt{3}i
Tenglama yechildi.
-10t-5t^{2}=65
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-5t^{2}-10t=65
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-5t^{2}-10t}{-5}=\frac{65}{-5}
Ikki tarafini -5 ga bo‘ling.
t^{2}+\left(-\frac{10}{-5}\right)t=\frac{65}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
t^{2}+2t=\frac{65}{-5}
-10 ni -5 ga bo'lish.
t^{2}+2t=-13
65 ni -5 ga bo'lish.
t^{2}+2t+1^{2}=-13+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}+2t+1=-13+1
1 kvadratini chiqarish.
t^{2}+2t+1=-12
-13 ni 1 ga qo'shish.
\left(t+1\right)^{2}=-12
t^{2}+2t+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t+1\right)^{2}}=\sqrt{-12}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t+1=2\sqrt{3}i t+1=-2\sqrt{3}i
Qisqartirish.
t=-1+2\sqrt{3}i t=-2\sqrt{3}i-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}