q uchun yechish
q = -\frac{48}{25} = -1\frac{23}{25} = -1,92
q=0
Baham ko'rish
Klipbordga nusxa olish
64+16q+25q^{2}=64+160q+100q^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(8+10q\right)^{2} kengaytirilishi uchun ishlating.
64+16q+25q^{2}-64=160q+100q^{2}
Ikkala tarafdan 64 ni ayirish.
16q+25q^{2}=160q+100q^{2}
0 olish uchun 64 dan 64 ni ayirish.
16q+25q^{2}-160q=100q^{2}
Ikkala tarafdan 160q ni ayirish.
-144q+25q^{2}=100q^{2}
-144q ni olish uchun 16q va -160q ni birlashtirish.
-144q+25q^{2}-100q^{2}=0
Ikkala tarafdan 100q^{2} ni ayirish.
-144q-75q^{2}=0
-75q^{2} ni olish uchun 25q^{2} va -100q^{2} ni birlashtirish.
q\left(-144-75q\right)=0
q omili.
q=0 q=-\frac{48}{25}
Tenglamani yechish uchun q=0 va -144-75q=0 ni yeching.
64+16q+25q^{2}=64+160q+100q^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(8+10q\right)^{2} kengaytirilishi uchun ishlating.
64+16q+25q^{2}-64=160q+100q^{2}
Ikkala tarafdan 64 ni ayirish.
16q+25q^{2}=160q+100q^{2}
0 olish uchun 64 dan 64 ni ayirish.
16q+25q^{2}-160q=100q^{2}
Ikkala tarafdan 160q ni ayirish.
-144q+25q^{2}=100q^{2}
-144q ni olish uchun 16q va -160q ni birlashtirish.
-144q+25q^{2}-100q^{2}=0
Ikkala tarafdan 100q^{2} ni ayirish.
-144q-75q^{2}=0
-75q^{2} ni olish uchun 25q^{2} va -100q^{2} ni birlashtirish.
-75q^{2}-144q=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
q=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}}}{2\left(-75\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -75 ni a, -144 ni b va 0 ni c bilan almashtiring.
q=\frac{-\left(-144\right)±144}{2\left(-75\right)}
\left(-144\right)^{2} ning kvadrat ildizini chiqarish.
q=\frac{144±144}{2\left(-75\right)}
-144 ning teskarisi 144 ga teng.
q=\frac{144±144}{-150}
2 ni -75 marotabaga ko'paytirish.
q=\frac{288}{-150}
q=\frac{144±144}{-150} tenglamasini yeching, bunda ± musbat. 144 ni 144 ga qo'shish.
q=-\frac{48}{25}
\frac{288}{-150} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
q=\frac{0}{-150}
q=\frac{144±144}{-150} tenglamasini yeching, bunda ± manfiy. 144 dan 144 ni ayirish.
q=0
0 ni -150 ga bo'lish.
q=-\frac{48}{25} q=0
Tenglama yechildi.
64+16q+25q^{2}=64+160q+100q^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(8+10q\right)^{2} kengaytirilishi uchun ishlating.
64+16q+25q^{2}-160q=64+100q^{2}
Ikkala tarafdan 160q ni ayirish.
64-144q+25q^{2}=64+100q^{2}
-144q ni olish uchun 16q va -160q ni birlashtirish.
64-144q+25q^{2}-100q^{2}=64
Ikkala tarafdan 100q^{2} ni ayirish.
64-144q-75q^{2}=64
-75q^{2} ni olish uchun 25q^{2} va -100q^{2} ni birlashtirish.
-144q-75q^{2}=64-64
Ikkala tarafdan 64 ni ayirish.
-144q-75q^{2}=0
0 olish uchun 64 dan 64 ni ayirish.
-75q^{2}-144q=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-75q^{2}-144q}{-75}=\frac{0}{-75}
Ikki tarafini -75 ga bo‘ling.
q^{2}+\left(-\frac{144}{-75}\right)q=\frac{0}{-75}
-75 ga bo'lish -75 ga ko'paytirishni bekor qiladi.
q^{2}+\frac{48}{25}q=\frac{0}{-75}
\frac{-144}{-75} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
q^{2}+\frac{48}{25}q=0
0 ni -75 ga bo'lish.
q^{2}+\frac{48}{25}q+\left(\frac{24}{25}\right)^{2}=\left(\frac{24}{25}\right)^{2}
\frac{48}{25} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{24}{25} olish uchun. Keyin, \frac{24}{25} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
q^{2}+\frac{48}{25}q+\frac{576}{625}=\frac{576}{625}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{24}{25} kvadratini chiqarish.
\left(q+\frac{24}{25}\right)^{2}=\frac{576}{625}
q^{2}+\frac{48}{25}q+\frac{576}{625} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(q+\frac{24}{25}\right)^{2}}=\sqrt{\frac{576}{625}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
q+\frac{24}{25}=\frac{24}{25} q+\frac{24}{25}=-\frac{24}{25}
Qisqartirish.
q=0 q=-\frac{48}{25}
Tenglamaning ikkala tarafidan \frac{24}{25} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}