y uchun yechish
y=-\frac{\sqrt{15}}{5}+1\approx 0,225403331
y=\frac{\sqrt{15}}{5}+1\approx 1,774596669
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{6000\left(-y+1\right)^{2}}{6000}=\frac{3600}{6000}
Ikki tarafini 6000 ga bo‘ling.
\left(-y+1\right)^{2}=\frac{3600}{6000}
6000 ga bo'lish 6000 ga ko'paytirishni bekor qiladi.
\left(-y+1\right)^{2}=\frac{3}{5}
\frac{3600}{6000} ulushini 1200 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
-y+1=\frac{\sqrt{15}}{5} -y+1=-\frac{\sqrt{15}}{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
-y+1-1=\frac{\sqrt{15}}{5}-1 -y+1-1=-\frac{\sqrt{15}}{5}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
-y=\frac{\sqrt{15}}{5}-1 -y=-\frac{\sqrt{15}}{5}-1
O‘zidan 1 ayirilsa 0 qoladi.
-y=\frac{\sqrt{15}}{5}-1
\frac{\sqrt{15}}{5} dan 1 ni ayirish.
-y=-\frac{\sqrt{15}}{5}-1
-\frac{\sqrt{15}}{5} dan 1 ni ayirish.
\frac{-y}{-1}=\frac{\frac{\sqrt{15}}{5}-1}{-1} \frac{-y}{-1}=\frac{-\frac{\sqrt{15}}{5}-1}{-1}
Ikki tarafini -1 ga bo‘ling.
y=\frac{\frac{\sqrt{15}}{5}-1}{-1} y=\frac{-\frac{\sqrt{15}}{5}-1}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
y=-\frac{\sqrt{15}}{5}+1
\frac{\sqrt{15}}{5}-1 ni -1 ga bo'lish.
y=\frac{\sqrt{15}}{5}+1
-\frac{\sqrt{15}}{5}-1 ni -1 ga bo'lish.
y=-\frac{\sqrt{15}}{5}+1 y=\frac{\sqrt{15}}{5}+1
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}