t uchun yechish
t=-\frac{9\sqrt{10}}{10}+1\approx -1,846049894
t=\frac{9\sqrt{10}}{10}+1\approx 3,846049894
Baham ko'rish
Klipbordga nusxa olish
\frac{60\left(-t+1\right)^{2}}{60}=\frac{486}{60}
Ikki tarafini 60 ga bo‘ling.
\left(-t+1\right)^{2}=\frac{486}{60}
60 ga bo'lish 60 ga ko'paytirishni bekor qiladi.
\left(-t+1\right)^{2}=\frac{81}{10}
\frac{486}{60} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
-t+1=\frac{9\sqrt{10}}{10} -t+1=-\frac{9\sqrt{10}}{10}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
-t+1-1=\frac{9\sqrt{10}}{10}-1 -t+1-1=-\frac{9\sqrt{10}}{10}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
-t=\frac{9\sqrt{10}}{10}-1 -t=-\frac{9\sqrt{10}}{10}-1
O‘zidan 1 ayirilsa 0 qoladi.
-t=\frac{9\sqrt{10}}{10}-1
\frac{9\sqrt{10}}{10} dan 1 ni ayirish.
-t=-\frac{9\sqrt{10}}{10}-1
-\frac{9\sqrt{10}}{10} dan 1 ni ayirish.
\frac{-t}{-1}=\frac{\frac{9\sqrt{10}}{10}-1}{-1} \frac{-t}{-1}=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
Ikki tarafini -1 ga bo‘ling.
t=\frac{\frac{9\sqrt{10}}{10}-1}{-1} t=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
t=-\frac{9\sqrt{10}}{10}+1
\frac{9\sqrt{10}}{10}-1 ni -1 ga bo'lish.
t=\frac{9\sqrt{10}}{10}+1
-\frac{9\sqrt{10}}{10}-1 ni -1 ga bo'lish.
t=-\frac{9\sqrt{10}}{10}+1 t=\frac{9\sqrt{10}}{10}+1
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}