Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

810=\left(x-2\times \frac{1}{2}\right)^{2}
810 hosil qilish uchun 6 va 135 ni ko'paytirish.
810=\left(x-1\right)^{2}
1 hosil qilish uchun 2 va \frac{1}{2} ni ko'paytirish.
810=x^{2}-2x+1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-2x+1=810
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-2x+1-810=0
Ikkala tarafdan 810 ni ayirish.
x^{2}-2x-809=0
-809 olish uchun 1 dan 810 ni ayirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-809\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -809 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-809\right)}}{2}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+3236}}{2}
-4 ni -809 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{3240}}{2}
4 ni 3236 ga qo'shish.
x=\frac{-\left(-2\right)±18\sqrt{10}}{2}
3240 ning kvadrat ildizini chiqarish.
x=\frac{2±18\sqrt{10}}{2}
-2 ning teskarisi 2 ga teng.
x=\frac{18\sqrt{10}+2}{2}
x=\frac{2±18\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 18\sqrt{10} ga qo'shish.
x=9\sqrt{10}+1
2+18\sqrt{10} ni 2 ga bo'lish.
x=\frac{2-18\sqrt{10}}{2}
x=\frac{2±18\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 18\sqrt{10} ni ayirish.
x=1-9\sqrt{10}
2-18\sqrt{10} ni 2 ga bo'lish.
x=9\sqrt{10}+1 x=1-9\sqrt{10}
Tenglama yechildi.
810=\left(x-2\times \frac{1}{2}\right)^{2}
810 hosil qilish uchun 6 va 135 ni ko'paytirish.
810=\left(x-1\right)^{2}
1 hosil qilish uchun 2 va \frac{1}{2} ni ko'paytirish.
810=x^{2}-2x+1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-2x+1=810
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(x-1\right)^{2}=810
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{810}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=9\sqrt{10} x-1=-9\sqrt{10}
Qisqartirish.
x=9\sqrt{10}+1 x=1-9\sqrt{10}
1 ni tenglamaning ikkala tarafiga qo'shish.