x uchun yechish
x=9\sqrt{10}+1\approx 29,460498942
x=1-9\sqrt{10}\approx -27,460498942
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
6(135)= { \left(x-2 \times \frac{ 1 }{ 2 } \right) }^{ 2 }
Baham ko'rish
Klipbordga nusxa olish
810=\left(x-2\times \frac{1}{2}\right)^{2}
810 hosil qilish uchun 6 va 135 ni ko'paytirish.
810=\left(x-1\right)^{2}
1 hosil qilish uchun 2 va \frac{1}{2} ni ko'paytirish.
810=x^{2}-2x+1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-2x+1=810
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-2x+1-810=0
Ikkala tarafdan 810 ni ayirish.
x^{2}-2x-809=0
-809 olish uchun 1 dan 810 ni ayirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-809\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -809 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-809\right)}}{2}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+3236}}{2}
-4 ni -809 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{3240}}{2}
4 ni 3236 ga qo'shish.
x=\frac{-\left(-2\right)±18\sqrt{10}}{2}
3240 ning kvadrat ildizini chiqarish.
x=\frac{2±18\sqrt{10}}{2}
-2 ning teskarisi 2 ga teng.
x=\frac{18\sqrt{10}+2}{2}
x=\frac{2±18\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 18\sqrt{10} ga qo'shish.
x=9\sqrt{10}+1
2+18\sqrt{10} ni 2 ga bo'lish.
x=\frac{2-18\sqrt{10}}{2}
x=\frac{2±18\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 18\sqrt{10} ni ayirish.
x=1-9\sqrt{10}
2-18\sqrt{10} ni 2 ga bo'lish.
x=9\sqrt{10}+1 x=1-9\sqrt{10}
Tenglama yechildi.
810=\left(x-2\times \frac{1}{2}\right)^{2}
810 hosil qilish uchun 6 va 135 ni ko'paytirish.
810=\left(x-1\right)^{2}
1 hosil qilish uchun 2 va \frac{1}{2} ni ko'paytirish.
810=x^{2}-2x+1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-2x+1=810
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(x-1\right)^{2}=810
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{810}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=9\sqrt{10} x-1=-9\sqrt{10}
Qisqartirish.
x=9\sqrt{10}+1 x=1-9\sqrt{10}
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}