Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}+6x=5-x
6x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}+6x-5=-x
Ikkala tarafdan 5 ni ayirish.
6x^{2}+6x-5+x=0
x ni ikki tarafga qo’shing.
6x^{2}+7x-5=0
7x ni olish uchun 6x va x ni birlashtirish.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-5\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 7 ni b va -5 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\times 6\left(-5\right)}}{2\times 6}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-24\left(-5\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49+120}}{2\times 6}
-24 ni -5 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{169}}{2\times 6}
49 ni 120 ga qo'shish.
x=\frac{-7±13}{2\times 6}
169 ning kvadrat ildizini chiqarish.
x=\frac{-7±13}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{6}{12}
x=\frac{-7±13}{12} tenglamasini yeching, bunda ± musbat. -7 ni 13 ga qo'shish.
x=\frac{1}{2}
\frac{6}{12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{20}{12}
x=\frac{-7±13}{12} tenglamasini yeching, bunda ± manfiy. -7 dan 13 ni ayirish.
x=-\frac{5}{3}
\frac{-20}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{1}{2} x=-\frac{5}{3}
Tenglama yechildi.
6x^{2}+6x=5-x
6x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}+6x+x=5
x ni ikki tarafga qo’shing.
6x^{2}+7x=5
7x ni olish uchun 6x va x ni birlashtirish.
\frac{6x^{2}+7x}{6}=\frac{5}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\frac{7}{6}x=\frac{5}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{5}{6}+\left(\frac{7}{12}\right)^{2}
\frac{7}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{12} olish uchun. Keyin, \frac{7}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{5}{6}+\frac{49}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{12} kvadratini chiqarish.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{169}{144}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{6} ni \frac{49}{144} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{7}{12}\right)^{2}=\frac{169}{144}
x^{2}+\frac{7}{6}x+\frac{49}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{12}=\frac{13}{12} x+\frac{7}{12}=-\frac{13}{12}
Qisqartirish.
x=\frac{1}{2} x=-\frac{5}{3}
Tenglamaning ikkala tarafidan \frac{7}{12} ni ayirish.