Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(6x-8\right)=0
x omili.
x=0 x=\frac{4}{3}
Tenglamani yechish uchun x=0 va 6x-8=0 ni yeching.
6x^{2}-8x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -8 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±8}{2\times 6}
\left(-8\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{8±8}{2\times 6}
-8 ning teskarisi 8 ga teng.
x=\frac{8±8}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{16}{12}
x=\frac{8±8}{12} tenglamasini yeching, bunda ± musbat. 8 ni 8 ga qo'shish.
x=\frac{4}{3}
\frac{16}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{12}
x=\frac{8±8}{12} tenglamasini yeching, bunda ± manfiy. 8 dan 8 ni ayirish.
x=0
0 ni 12 ga bo'lish.
x=\frac{4}{3} x=0
Tenglama yechildi.
6x^{2}-8x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{6x^{2}-8x}{6}=\frac{0}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\left(-\frac{8}{6}\right)x=\frac{0}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{3}x=\frac{0}{6}
\frac{-8}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{4}{3}x=0
0 ni 6 ga bo'lish.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{3} olish uchun. Keyin, -\frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{3} kvadratini chiqarish.
\left(x-\frac{2}{3}\right)^{2}=\frac{4}{9}
x^{2}-\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{3}=\frac{2}{3} x-\frac{2}{3}=-\frac{2}{3}
Qisqartirish.
x=\frac{4}{3} x=0
\frac{2}{3} ni tenglamaning ikkala tarafiga qo'shish.