Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}-5x-5=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-5\right)}}{2\times 6}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-5\right)}}{2\times 6}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-5\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25+120}}{2\times 6}
-24 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{145}}{2\times 6}
25 ni 120 ga qo'shish.
x=\frac{5±\sqrt{145}}{2\times 6}
-5 ning teskarisi 5 ga teng.
x=\frac{5±\sqrt{145}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{\sqrt{145}+5}{12}
x=\frac{5±\sqrt{145}}{12} tenglamasini yeching, bunda ± musbat. 5 ni \sqrt{145} ga qo'shish.
x=\frac{5-\sqrt{145}}{12}
x=\frac{5±\sqrt{145}}{12} tenglamasini yeching, bunda ± manfiy. 5 dan \sqrt{145} ni ayirish.
6x^{2}-5x-5=6\left(x-\frac{\sqrt{145}+5}{12}\right)\left(x-\frac{5-\sqrt{145}}{12}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{5+\sqrt{145}}{12} ga va x_{2} uchun \frac{5-\sqrt{145}}{12} ga bo‘ling.