Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}=5
5 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{5}{6}
Ikki tarafini 6 ga bo‘ling.
x=\frac{\sqrt{30}}{6} x=-\frac{\sqrt{30}}{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
6x^{2}-5=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-5\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 0 ni b va -5 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 6\left(-5\right)}}{2\times 6}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-24\left(-5\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{0±\sqrt{120}}{2\times 6}
-24 ni -5 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{30}}{2\times 6}
120 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{30}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{\sqrt{30}}{6}
x=\frac{0±2\sqrt{30}}{12} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{30}}{6}
x=\frac{0±2\sqrt{30}}{12} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{30}}{6} x=-\frac{\sqrt{30}}{6}
Tenglama yechildi.