Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}-2x-6=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-6\right)}}{2\times 6}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-6\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4+144}}{2\times 6}
-24 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{148}}{2\times 6}
4 ni 144 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{37}}{2\times 6}
148 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{37}}{2\times 6}
-2 ning teskarisi 2 ga teng.
x=\frac{2±2\sqrt{37}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{2\sqrt{37}+2}{12}
x=\frac{2±2\sqrt{37}}{12} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{37} ga qo'shish.
x=\frac{\sqrt{37}+1}{6}
2+2\sqrt{37} ni 12 ga bo'lish.
x=\frac{2-2\sqrt{37}}{12}
x=\frac{2±2\sqrt{37}}{12} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{37} ni ayirish.
x=\frac{1-\sqrt{37}}{6}
2-2\sqrt{37} ni 12 ga bo'lish.
6x^{2}-2x-6=6\left(x-\frac{\sqrt{37}+1}{6}\right)\left(x-\frac{1-\sqrt{37}}{6}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1+\sqrt{37}}{6} ga va x_{2} uchun \frac{1-\sqrt{37}}{6} ga bo‘ling.