Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}-14x-9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 6\left(-9\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -14 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 6\left(-9\right)}}{2\times 6}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-24\left(-9\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{196+216}}{2\times 6}
-24 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{412}}{2\times 6}
196 ni 216 ga qo'shish.
x=\frac{-\left(-14\right)±2\sqrt{103}}{2\times 6}
412 ning kvadrat ildizini chiqarish.
x=\frac{14±2\sqrt{103}}{2\times 6}
-14 ning teskarisi 14 ga teng.
x=\frac{14±2\sqrt{103}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{2\sqrt{103}+14}{12}
x=\frac{14±2\sqrt{103}}{12} tenglamasini yeching, bunda ± musbat. 14 ni 2\sqrt{103} ga qo'shish.
x=\frac{\sqrt{103}+7}{6}
14+2\sqrt{103} ni 12 ga bo'lish.
x=\frac{14-2\sqrt{103}}{12}
x=\frac{14±2\sqrt{103}}{12} tenglamasini yeching, bunda ± manfiy. 14 dan 2\sqrt{103} ni ayirish.
x=\frac{7-\sqrt{103}}{6}
14-2\sqrt{103} ni 12 ga bo'lish.
x=\frac{\sqrt{103}+7}{6} x=\frac{7-\sqrt{103}}{6}
Tenglama yechildi.
6x^{2}-14x-9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
6x^{2}-14x-9-\left(-9\right)=-\left(-9\right)
9 ni tenglamaning ikkala tarafiga qo'shish.
6x^{2}-14x=-\left(-9\right)
O‘zidan -9 ayirilsa 0 qoladi.
6x^{2}-14x=9
0 dan -9 ni ayirish.
\frac{6x^{2}-14x}{6}=\frac{9}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\left(-\frac{14}{6}\right)x=\frac{9}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{3}x=\frac{9}{6}
\frac{-14}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{3}x=\frac{3}{2}
\frac{9}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=\frac{3}{2}+\left(-\frac{7}{6}\right)^{2}
-\frac{7}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{6} olish uchun. Keyin, -\frac{7}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{3}{2}+\frac{49}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{6} kvadratini chiqarish.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{103}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{49}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{6}\right)^{2}=\frac{103}{36}
x^{2}-\frac{7}{3}x+\frac{49}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{103}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{6}=\frac{\sqrt{103}}{6} x-\frac{7}{6}=-\frac{\sqrt{103}}{6}
Qisqartirish.
x=\frac{\sqrt{103}+7}{6} x=\frac{7-\sqrt{103}}{6}
\frac{7}{6} ni tenglamaning ikkala tarafiga qo'shish.