Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}-13x+12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\times 12}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -13 ni b va 12 ni c bilan almashtiring.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 6\times 12}}{2\times 6}
-13 kvadratini chiqarish.
x=\frac{-\left(-13\right)±\sqrt{169-24\times 12}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-13\right)±\sqrt{169-288}}{2\times 6}
-24 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-13\right)±\sqrt{-119}}{2\times 6}
169 ni -288 ga qo'shish.
x=\frac{-\left(-13\right)±\sqrt{119}i}{2\times 6}
-119 ning kvadrat ildizini chiqarish.
x=\frac{13±\sqrt{119}i}{2\times 6}
-13 ning teskarisi 13 ga teng.
x=\frac{13±\sqrt{119}i}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{13+\sqrt{119}i}{12}
x=\frac{13±\sqrt{119}i}{12} tenglamasini yeching, bunda ± musbat. 13 ni i\sqrt{119} ga qo'shish.
x=\frac{-\sqrt{119}i+13}{12}
x=\frac{13±\sqrt{119}i}{12} tenglamasini yeching, bunda ± manfiy. 13 dan i\sqrt{119} ni ayirish.
x=\frac{13+\sqrt{119}i}{12} x=\frac{-\sqrt{119}i+13}{12}
Tenglama yechildi.
6x^{2}-13x+12=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
6x^{2}-13x+12-12=-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
6x^{2}-13x=-12
O‘zidan 12 ayirilsa 0 qoladi.
\frac{6x^{2}-13x}{6}=-\frac{12}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}-\frac{13}{6}x=-\frac{12}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{13}{6}x=-2
-12 ni 6 ga bo'lish.
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=-2+\left(-\frac{13}{12}\right)^{2}
-\frac{13}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{12} olish uchun. Keyin, -\frac{13}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{13}{6}x+\frac{169}{144}=-2+\frac{169}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{12} kvadratini chiqarish.
x^{2}-\frac{13}{6}x+\frac{169}{144}=-\frac{119}{144}
-2 ni \frac{169}{144} ga qo'shish.
\left(x-\frac{13}{12}\right)^{2}=-\frac{119}{144}
x^{2}-\frac{13}{6}x+\frac{169}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{-\frac{119}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{13}{12}=\frac{\sqrt{119}i}{12} x-\frac{13}{12}=-\frac{\sqrt{119}i}{12}
Qisqartirish.
x=\frac{13+\sqrt{119}i}{12} x=\frac{-\sqrt{119}i+13}{12}
\frac{13}{12} ni tenglamaning ikkala tarafiga qo'shish.