Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

16x^{2}-1=0
Ikki tarafini \frac{3}{8} ga bo‘ling.
\left(4x-1\right)\left(4x+1\right)=0
Hisoblang: 16x^{2}-1. 16x^{2}-1 ni \left(4x\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{4} x=-\frac{1}{4}
Tenglamani yechish uchun 4x-1=0 va 4x+1=0 ni yeching.
6x^{2}=\frac{3}{8}
\frac{3}{8} ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{\frac{3}{8}}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}=\frac{3}{8\times 6}
\frac{\frac{3}{8}}{6} ni yagona kasrga aylantiring.
x^{2}=\frac{3}{48}
48 hosil qilish uchun 8 va 6 ni ko'paytirish.
x^{2}=\frac{1}{16}
\frac{3}{48} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{1}{4} x=-\frac{1}{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
6x^{2}-\frac{3}{8}=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-\frac{3}{8}\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 0 ni b va -\frac{3}{8} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 6\left(-\frac{3}{8}\right)}}{2\times 6}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-24\left(-\frac{3}{8}\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{0±\sqrt{9}}{2\times 6}
-24 ni -\frac{3}{8} marotabaga ko'paytirish.
x=\frac{0±3}{2\times 6}
9 ning kvadrat ildizini chiqarish.
x=\frac{0±3}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{1}{4}
x=\frac{0±3}{12} tenglamasini yeching, bunda ± musbat. \frac{3}{12} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{1}{4}
x=\frac{0±3}{12} tenglamasini yeching, bunda ± manfiy. \frac{-3}{12} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{1}{4} x=-\frac{1}{4}
Tenglama yechildi.