x uchun yechish
x=\frac{1}{4}=0,25
x=-\frac{1}{4}=-0,25
Grafik
Baham ko'rish
Klipbordga nusxa olish
16x^{2}-1=0
Ikki tarafini \frac{3}{8} ga bo‘ling.
\left(4x-1\right)\left(4x+1\right)=0
Hisoblang: 16x^{2}-1. 16x^{2}-1 ni \left(4x\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{4} x=-\frac{1}{4}
Tenglamani yechish uchun 4x-1=0 va 4x+1=0 ni yeching.
6x^{2}=\frac{3}{8}
\frac{3}{8} ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{\frac{3}{8}}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}=\frac{3}{8\times 6}
\frac{\frac{3}{8}}{6} ni yagona kasrga aylantiring.
x^{2}=\frac{3}{48}
48 hosil qilish uchun 8 va 6 ni ko'paytirish.
x^{2}=\frac{1}{16}
\frac{3}{48} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{1}{4} x=-\frac{1}{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
6x^{2}-\frac{3}{8}=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-\frac{3}{8}\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 0 ni b va -\frac{3}{8} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 6\left(-\frac{3}{8}\right)}}{2\times 6}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-24\left(-\frac{3}{8}\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{0±\sqrt{9}}{2\times 6}
-24 ni -\frac{3}{8} marotabaga ko'paytirish.
x=\frac{0±3}{2\times 6}
9 ning kvadrat ildizini chiqarish.
x=\frac{0±3}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{1}{4}
x=\frac{0±3}{12} tenglamasini yeching, bunda ± musbat. \frac{3}{12} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{1}{4}
x=\frac{0±3}{12} tenglamasini yeching, bunda ± manfiy. \frac{-3}{12} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{1}{4} x=-\frac{1}{4}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}