Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3\left(2x^{2}+3x\right)
3 omili.
x\left(2x+3\right)
Hisoblang: 2x^{2}+3x. x omili.
3x\left(2x+3\right)
Toʻliq ajratilgan ifodani qaytadan yozing.
6x^{2}+9x=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-9±\sqrt{9^{2}}}{2\times 6}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-9±9}{2\times 6}
9^{2} ning kvadrat ildizini chiqarish.
x=\frac{-9±9}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{0}{12}
x=\frac{-9±9}{12} tenglamasini yeching, bunda ± musbat. -9 ni 9 ga qo'shish.
x=0
0 ni 12 ga bo'lish.
x=-\frac{18}{12}
x=\frac{-9±9}{12} tenglamasini yeching, bunda ± manfiy. -9 dan 9 ni ayirish.
x=-\frac{3}{2}
\frac{-18}{12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
6x^{2}+9x=6x\left(x-\left(-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 0 ga va x_{2} uchun -\frac{3}{2} ga bo‘ling.
6x^{2}+9x=6x\left(x+\frac{3}{2}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
6x^{2}+9x=6x\times \frac{2x+3}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
6x^{2}+9x=3x\left(2x+3\right)
6 va 2 ichida eng katta umumiy 2 faktorini bekor qiling.