Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}+6x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-6±\sqrt{6^{2}-4\times 6}}{2\times 6}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{36-4\times 6}}{2\times 6}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-24}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{12}}{2\times 6}
36 ni -24 ga qo'shish.
x=\frac{-6±2\sqrt{3}}{2\times 6}
12 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{3}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{2\sqrt{3}-6}{12}
x=\frac{-6±2\sqrt{3}}{12} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{3} ga qo'shish.
x=\frac{\sqrt{3}}{6}-\frac{1}{2}
-6+2\sqrt{3} ni 12 ga bo'lish.
x=\frac{-2\sqrt{3}-6}{12}
x=\frac{-6±2\sqrt{3}}{12} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{3} ni ayirish.
x=-\frac{\sqrt{3}}{6}-\frac{1}{2}
-6-2\sqrt{3} ni 12 ga bo'lish.
6x^{2}+6x+1=6\left(x-\left(\frac{\sqrt{3}}{6}-\frac{1}{2}\right)\right)\left(x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\frac{1}{2}+\frac{\sqrt{3}}{6} ga va x_{2} uchun -\frac{1}{2}-\frac{\sqrt{3}}{6} ga bo‘ling.