Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(6x+30\right)=0
x omili.
x=0 x=-5
Tenglamani yechish uchun x=0 va 6x+30=0 ni yeching.
6x^{2}+30x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-30±\sqrt{30^{2}}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 30 ni b va 0 ni c bilan almashtiring.
x=\frac{-30±30}{2\times 6}
30^{2} ning kvadrat ildizini chiqarish.
x=\frac{-30±30}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{0}{12}
x=\frac{-30±30}{12} tenglamasini yeching, bunda ± musbat. -30 ni 30 ga qo'shish.
x=0
0 ni 12 ga bo'lish.
x=-\frac{60}{12}
x=\frac{-30±30}{12} tenglamasini yeching, bunda ± manfiy. -30 dan 30 ni ayirish.
x=-5
-60 ni 12 ga bo'lish.
x=0 x=-5
Tenglama yechildi.
6x^{2}+30x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{6x^{2}+30x}{6}=\frac{0}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\frac{30}{6}x=\frac{0}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}+5x=\frac{0}{6}
30 ni 6 ga bo'lish.
x^{2}+5x=0
0 ni 6 ga bo'lish.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
Qisqartirish.
x=0 x=-5
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.