Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}=-25
Ikkala tarafdan 25 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=-\frac{25}{6}
Ikki tarafini 6 ga bo‘ling.
x=\frac{5\sqrt{6}i}{6} x=-\frac{5\sqrt{6}i}{6}
Tenglama yechildi.
6x^{2}+25=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\times 25}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 0 ni b va 25 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 6\times 25}}{2\times 6}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-24\times 25}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-600}}{2\times 6}
-24 ni 25 marotabaga ko'paytirish.
x=\frac{0±10\sqrt{6}i}{2\times 6}
-600 ning kvadrat ildizini chiqarish.
x=\frac{0±10\sqrt{6}i}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{5\sqrt{6}i}{6}
x=\frac{0±10\sqrt{6}i}{12} tenglamasini yeching, bunda ± musbat.
x=-\frac{5\sqrt{6}i}{6}
x=\frac{0±10\sqrt{6}i}{12} tenglamasini yeching, bunda ± manfiy.
x=\frac{5\sqrt{6}i}{6} x=-\frac{5\sqrt{6}i}{6}
Tenglama yechildi.