Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}+18x-19=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-18±\sqrt{18^{2}-4\times 6\left(-19\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 18 ni b va -19 ni c bilan almashtiring.
x=\frac{-18±\sqrt{324-4\times 6\left(-19\right)}}{2\times 6}
18 kvadratini chiqarish.
x=\frac{-18±\sqrt{324-24\left(-19\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-18±\sqrt{324+456}}{2\times 6}
-24 ni -19 marotabaga ko'paytirish.
x=\frac{-18±\sqrt{780}}{2\times 6}
324 ni 456 ga qo'shish.
x=\frac{-18±2\sqrt{195}}{2\times 6}
780 ning kvadrat ildizini chiqarish.
x=\frac{-18±2\sqrt{195}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{2\sqrt{195}-18}{12}
x=\frac{-18±2\sqrt{195}}{12} tenglamasini yeching, bunda ± musbat. -18 ni 2\sqrt{195} ga qo'shish.
x=\frac{\sqrt{195}}{6}-\frac{3}{2}
-18+2\sqrt{195} ni 12 ga bo'lish.
x=\frac{-2\sqrt{195}-18}{12}
x=\frac{-18±2\sqrt{195}}{12} tenglamasini yeching, bunda ± manfiy. -18 dan 2\sqrt{195} ni ayirish.
x=-\frac{\sqrt{195}}{6}-\frac{3}{2}
-18-2\sqrt{195} ni 12 ga bo'lish.
x=\frac{\sqrt{195}}{6}-\frac{3}{2} x=-\frac{\sqrt{195}}{6}-\frac{3}{2}
Tenglama yechildi.
6x^{2}+18x-19=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
6x^{2}+18x-19-\left(-19\right)=-\left(-19\right)
19 ni tenglamaning ikkala tarafiga qo'shish.
6x^{2}+18x=-\left(-19\right)
O‘zidan -19 ayirilsa 0 qoladi.
6x^{2}+18x=19
0 dan -19 ni ayirish.
\frac{6x^{2}+18x}{6}=\frac{19}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\frac{18}{6}x=\frac{19}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}+3x=\frac{19}{6}
18 ni 6 ga bo'lish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{19}{6}+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=\frac{19}{6}+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=\frac{65}{12}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{19}{6} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{2}\right)^{2}=\frac{65}{12}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{65}{12}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{\sqrt{195}}{6} x+\frac{3}{2}=-\frac{\sqrt{195}}{6}
Qisqartirish.
x=\frac{\sqrt{195}}{6}-\frac{3}{2} x=-\frac{\sqrt{195}}{6}-\frac{3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.